This paper describes the synthesis of a 9-mers-long peptide ladder structure of glycine on a modified glass surface using a nanoliter droplet ejector. To synthesize peptide on a glass substrate, SPOT peptide synthesis protocol was followed with a nozzleless acoustic droplet ejector being used to eject about 300 droplets of preactivated amino acid solution to dispense 60 nL of the solution per mer. The coupling efficiency of each mer was measured with FITC fluorescent tag to be 96%, resulting in net 70% efficiency for the whole 9-mer-long peptide of glycine. Usage of a nanoliter droplet ejector for SPOT peptide synthesis increases the density of protein array on a chip.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2013.2287218DOI Listing

Publication Analysis

Top Keywords

droplet ejector
16
peptide synthesis
12
glass substrate
8
acoustic droplet
8
nanoliter droplet
8
spot peptide
8
peptide
6
synthesis glass
4
substrate acoustic
4
droplet
4

Similar Publications

Sample efficient approaches in time-resolved X-ray serial crystallography and complementary X-ray emission spectroscopy using drop-on-demand tape-drive systems.

Methods Enzymol

November 2024

Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom. Electronic address:

Dynamic structural biology enables studying biological events at the atomic scale from 10's of femtoseconds to a few seconds duration. With the advent of X-ray Free Electron Lasers (XFELs) and 4th generation synchrotrons, serial crystallography is becoming a major player for time-resolved experiments in structural biology. Despite significant progress, challenges such as obtaining sufficient amounts of protein to produce homogeneous microcrystal slurry, remain.

View Article and Find Full Text PDF

Objective: To achieve a contactless and damage-less extraction of a single (or a few) human retinal pigment epithelial (RPE) cell(s) from a cell monolayer with acoustic droplet ejection.

Methods: An acoustic droplet ejector based on a self-focusing acoustic transducer (SFAT) is designed, microfabricated, and placed on a precision movable stage that aligns it to the targeted cell(s) in a Petri dish. The device delivers 20.

View Article and Find Full Text PDF

Effect of an extraoral scavenging device on eliminating droplets and aerosols generated in ultrasonic supragingival scaling: A randomised clinical trial.

Int J Dent Hyg

February 2025

Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.

Objectives: Ultrasonic scaling is extensively applied as part of the initial therapy for periodontal diseases, which has been restricted since the outbreak of the COVID-19 pandemic due to droplets and aerosols generated by ultrasonic devices. An extraoral scavenging device (EOS) was designed for diminishing droplets and aerosols in dental clinics. The objective of this study is to evaluate the effect of EOS on eliminating droplets and aerosols during ultrasonic supragingival scaling.

View Article and Find Full Text PDF

Auto-ejection of liquid from a nozzle.

Phys Rev E

April 2024

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.

Auto-ejection of liquid is an important process in engineering applications, and is also very complicated since it involves interface moving, deforming, and jet breaking up. In this work, a theoretical velocity of meniscus at nozzle exit is first derived, which can be used to analyze the critical condition for auto-ejection of liquid. Then a consistent and conservative axisymmetric lattice Boltzmann (LB) method is proposed to study the auto-ejection process of liquid jet from a nozzle.

View Article and Find Full Text PDF

Background: Since the outbreak of COVID-19, how to reduce the risk of spreading viruses and other microorganisms while performing aerosolgenerating procedures (AGPs) has become a challenging question within the dental and dental hygiene communities. The purpose of this position paper is to summarize the evidence of the effectiveness of various mitigation methods used to reduce the risk of infection transmission during AGPs in dentistry.

Methods: The authors searched 6 databases-MEDLINE, EMBASE, Scopus, Web of Science, Cochrane Library, and Google Scholar-for relevant scientific evidence published between January 2012 and December 2022 to answer 6 research questions about the risk of transmission, methods, devices, and personal protective equipment (PPE) used to reduce contact with microbial pathogens and limit the spread of aerosols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!