A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How to avoid unbounded drug accumulation with fractional pharmacokinetics. | LitMetric

A number of studies have shown that certain drugs follow an anomalous kinetics that can hardly be represented by classical models. Instead, fractional-order pharmacokinetics models have proved to be better suited to represent the time course of these drugs in the body. Unlike classical models, fractional models can represent memory effects and a power-law terminal phase. They give rise to a more complex kinetics that better reflects the complexity of the human body. By doing so, they also spotlight potential issues that were ignored by classical models. Among those issues is the accumulation of drug that carries on indefinitely when the infusion rate is constant and the elimination flux is fractional. Such an unbounded accumulation could have important clinical implications and thus requires a solution to reach a steady state. We have considered a fractional one-compartment model with a continuous intravenous infusion and studied how the infusion rate influences the total amount of drug in the compartment. By taking an infusion rate that decays like a power law, we have been able to stabilize the amount of drug in the compartment. In the case of multiple dosing administration, we propose recurrence relations for the doses and the dosing times that also prevent drug accumulation. By introducing a numerical discretization of the model equations, we have been able to consider a more realistic two-compartment model with both continuous infusion and multiple dosing administration. That numerical model has been applied to amiodarone, a drug known to have an anomalous kinetics. Numerical results suggest that unbounded drug accumulation can again be prevented by using a drug input function that decays as a power law.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10928-013-9340-2DOI Listing

Publication Analysis

Top Keywords

drug accumulation
12
classical models
12
infusion rate
12
drug
8
unbounded drug
8
anomalous kinetics
8
model continuous
8
amount drug
8
drug compartment
8
decays power
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!