Synergistic activities of MET/RON inhibitor BMS-777607 and mTOR inhibitor AZD8055 to polyploid cells derived from pancreatic cancer and cancer stem cells.

Mol Cancer Ther

Corresponding Author: M.H. Wang, Department of Biomedical Sciences; School of Pharmacy, Texas Tech University Health Sciences Center, 1406 South Coulter Street, Suite 1117, Amarillo, TX 79106.

Published: January 2014

Tyrosine kinase inhibitor BMS-777067 is an inhibitor of RON/MET receptor tyrosine kinases currently under clinical trials. Here, we report the synergistic activity of BMS-777607 in combination with mTOR inhibitor AZD8055 in killing chemoresistant pancreatic cancer and cancer stem cells. Treatment of pancreatic cancer L3.6pl cells with BMS-777607 alone inhibited clonogenic growth and moderately induced apoptotic death. However, BMS-777607 caused extensive polyploidy in L3.6pl cells through inhibition of aurora kinase B activity, independent of RON expression. In contrast, L3.6pl-derived cancer stem cells were highly resistant to BMS-777607-induced growth inhibition and apoptosis. The effect of BMS-777607 on induction of cancer stem cell polyploidy was also weak. BMS-777607-induced polyploidy features a predominant cell population with 8N chromosome content in both L3.6pl and cancer stem cells. These cells also showed decreased sensitivity toward chemotherapeutics by increased survival of IC(50) values in response to doxorubicin, cisplatin, methotrexate, 5-fluorouracial, and gemcitabine. Among a panel of chemical inhibitors that target different signaling proteins, we found that BMS-777607 in combination with mTOR inhibitor AZD8055 exerted synergistic effects on L3.6pl and cancer stem cells. More than 70% of L3.6pl and cancer stem cells lost their viability when both inhibitors were used. Specifically, BMS-777607 in combination with inhibition of mTORC2, but not mTORC1, was responsible for the observed synergism. Our findings demonstrate that BMS-777607 at therapeutic doses exerts inhibitory activities on pancreatic cancer cells but also induces polyploidy insensitive to chemotherapeutics. Combination of BMS-777607 with AZD8055 achieves the maximal cytotoxic effect on pancreatic cancer and cancer stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-13-0242DOI Listing

Publication Analysis

Top Keywords

cancer stem
32
stem cells
28
pancreatic cancer
20
cancer
13
mtor inhibitor
12
inhibitor azd8055
12
cells
12
cancer cancer
12
bms-777607 combination
12
l36pl cancer
12

Similar Publications

Traditional fluorescence microscopy is blind to molecular microenvironment information that is present in fluorescence lifetime, which can be measured by fluorescence lifetime imaging microscopy (FLIM). However, most existing FLIM techniques are slow to acquire and process lifetime images, difficult to implement, and expensive. Here, we present instant FLIM, an analog signal processing method that allows real-time streaming of fluorescence intensity, lifetime, and phasor imaging data through simultaneous image acquisition and instantaneous data processing.

View Article and Find Full Text PDF

Introduction: Understanding differences in clinical outcomes between PBSCT and BMT is important, and this study compared outcomes of HLA-matched related PBSCT and BMT using reduced-intensity conditioning (RIC) in adult acute myeloid leukemia (AML) patients.

Methods: Data from 402 patients who underwent either PBSCT ( = 294) or BMT ( = 108) between 2000 and 2022 were analyzed using the Japanese nationwide registry database. The primary endpoint was overall survival (OS), and secondary endpoints included disease-free survival (DFS), non-relapse mortality (NRM), and GVHD.

View Article and Find Full Text PDF

Investigating POU3F4 in cancer: Expression patterns, prognostic implications, and functional roles in tumor immunity.

Heliyon

January 2025

Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.

Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions.

View Article and Find Full Text PDF

Objectives: KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein involved in several cellular processes, including nuclear splicing, mRNA localization, and cytoplasmic degradation. While KHSRP's role has been studied in other cancers, its specific involvement in gastric cancer remains poorly understood. This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response.

View Article and Find Full Text PDF

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!