The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 μm diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5-5.0 is too low to be compatible with a 'second messenger' function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00397885 | DOI Listing |
Rice (N Y)
January 2025
Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.
Cotton fibers are single cells that develop from the epidermal cells in the outer integument of developing seeds. The processes regulating fiber cell development have been extensively studied; however, the spatiotemporal transcriptome and metabolome profiles during the early stages of fiber development remain largely unknown. In this study, we profile the dynamics of transcriptome and metabolome during the early stages of cotton fiber cell development using a combination of spatial transcriptomic, single-cell transcriptomic, and spatial metabolomic analyses.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
INSERM, Bergonie Cancer Institute, University of Bordeaux, Bordeaux, France.
The mammary epithelium has an inner luminal layer that contains estrogen receptor (ER)-positive hormone-sensing cells and ER-negative alveolar/secretory cells, and an outer basal layer that contains myoepithelial/stem cells. Most human tumours resemble either hormone-sensing cells or alveolar/secretory cells. The most widely used molecular classification, the Intrinsic classification, assigns hormone-sensing tumours to Luminal A/B and human epidermal growth factor 2-enriched (HER2E)/molecular apocrine (MA)/luminal androgen receptor (LAR)-positive classes, and alveolar/secretory tumours to the Basal-like class.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
College of Life Sciences, Liaoning Normal University, Dalian 116000, Liaoning Province, China.
Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.
View Article and Find Full Text PDFAssay Drug Dev Technol
January 2025
Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!