In this study, hydroxyapatite (HAP) was surface-modified by the addition of β-alanine (β-Ala), and the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxy-anhydride (BLG-NCA) was subsequently initiated. HAP containing surface poly-γ-benzyl-L-glutamates (PBLG) was successfully prepared in this way. With the increase of PBLG content in HAP-PBLG, the solubility of HAP-PBLG increased gradually and it was ultimately soluble in chloroform. HAP-PLGA with surface carboxyl groups was obtained by the catalytic hydrogenation of HAP-PBLG. In the process of HAP modification, the morphology changes from rod to sheet and from flake to needle. The effect of BLG-NCA concentration on the character of hydroxyapatite-β-alanine-poly(γ-benzyl-L-glutamate) (HAP-PBLG) was investigated. The existence of amino acids on the HAP surfaces was confirmed in the resulting Fourier transform infrared (FTIR) spectra. The resulting powder X-ray diffraction patterns indicated that the crystallinity of HAP decreased when the ratio of BLG-NCA/HAP-NH2 increased to 20/1. Transmission electron microscopy (TEM) indicated that the particle size of HAP-PBLG decreased significantly and that the resulting particles appeared less agglomerated relative to that of the HAP-NH₂ crystals. Furthermore, ¹H-NMR spectra and FTIR spectra revealed that hydroxyapatite-β-alanine-poly (L-glutamic acid) (HAP-PLGA) was able to successfully bear carboxylic acid groups on its side chains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270268 | PMC |
http://dx.doi.org/10.3390/molecules181113979 | DOI Listing |
Anal Methods
January 2025
Jiangsu Beier Machinery Co. Ltd, Jiangsu, 215600, China.
Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Physics, University of Lucknow, Lucknow 226007, India.
In this paper, the dielectric behaviour of coconut oil within the frequency range 100 kHz to 30 MHz between temperature 30 °C-50 °C has been observed. The measured values of the dielectric constant and dielectric loss show notable variation with frequency and temperature for pure coconut oil. It is noticed that the dielectric constant (՛) and dielectric loss (՛՛) of coconut oil decreases with increasing temperature.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFEnviron Res
January 2025
Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, South Korea.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Science, Department of Chemistry, Firat University, 23200, Elazığ, Turkey.
In this study, firstly chitin was reacted with chloracetyl chloride to synthesize the macroinitiator chitinchloroacetate (Ch.ClAc). Then, graft copolymers of methacrylamide (MAM), diacetone acrylamide (DAAM), N-(4-nitrophenyl)acrylamide (NPA), and 2-hydroxyethyl methacrylate (HEMA) monomers were synthesized by atom transfer radical polymerization (ATRP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!