The purposes of this present research were, in the first study, to determine whether age impacts a measure of postural control (the braking force in walking) and, in a second study, to determine whether exergame training in physically-simulated sport activity would show transfer, increasing the braking force in walking and also improving balance assessed by clinical measures, functional fitness, and health-related quality of life in older adults. For the second study, the authors developed an active video game training program (using the Wii system) with a pretest-training-posttest design comparing an experimental group (24 1-hr sessions of training) with a control group. Participants completed a battery comprising balance (braking force in short and normal step conditions), functional fitness (Senior Fitness Test), and health-related quality of life (SF-36). Results show that 12 weeks of video game-based exercise program training improved the braking force in the normal step condition, along with the functional fitness of lower limb strength, cardiovascular endurance, and motor agility, as measured by the Senior Fitness Test. Only the global mental dimension of the SF-36 was sensitive to exergame practice. Exergames appear to be an effective way to train postural control in older adults. Because of the multimodal nature of the activity, exergames provide an effective tool for remediation of age-related problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/japa.2013-0001 | DOI Listing |
J Orthop Res
January 2025
1-7 Gait and Motion Analysis Center, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Flexible flatfoot is common among school-age children and significantly affects walking efficiency, balance stability, and joint-movement coordination in children. The demands on the skeletal structure and muscle function are increased during running; however, the impact of a flexible flatfoot on children's running capabilities is unclear. In this study, we aimed to investigate the effects of flexible flatfoot on the running function of school-age children.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
Jayhawk Athletic Performance Laboratory-Wu Tsai Human Performance Alliance, University of Kansas, University of Kansas, Lawrence, Kansas.
Philipp, NM, Blackburn, SD, Cabarkapa, D, and Fry, AC. The effects of a low-volume, high-intensity pre-season micro-cycle on neuromuscular performance in collegiate female basketball players. J Strength Cond Res 38(12): 2136-2146, 2024-The use of stretch-shortening cycle (SSC)-based measures of vertical jump performance to monitor responses to training exposures is common practice in sport science.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.
Kember, LS, Riehm, CD, Schille, A, Slaton, JA, Myer, GD, and Lloyd, RS. Residual biomechanical deficits identified with the tuck jump assessment in female athletes 9 months after ACLR surgery. J Strength Cond Res 38(12): 2065-2073, 2024-Addressing biomechanical deficits in female athletes after anterior cruciate ligament reconstruction (ACLR) is crucial for safe return-to-play.
View Article and Find Full Text PDFJ Strength Cond Res
September 2024
School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.
Kember, LS, Riehm, CD, Schille, A, Slaton, JA, Myer, GD, and Lloyd, RS. Residual biomechanical deficits identified with the tuck jump assessment in female athletes 9 months after ACLR surgery. J Strength Cond Res XX(X): 000-000, 2024-Addressing biomechanical deficits in female athletes after anterior cruciate ligament reconstruction (ACLR) is crucial for safe return-to-play.
View Article and Find Full Text PDFTraffic Inj Prev
January 2025
School of vehicle and mobility, Tsinghua University, Beijing, China.
Objective: Previous research has established the effectiveness of active pretensioning seatbelts (APS), also termed motorized pretensioning seatbelts, in mitigating forward leaning and out-of-position displacement during pre-crash scenarios. In the Chinese market, APS trigger times are typically set later than those reported in the literature. This study investigates the real-world performance of APS systems with delayed trigger times under emergency braking conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!