Epithelia consisting of highly polarized columnar cells contribute to many organs during development, including the central nervous system. Epithelial organization is essential for proliferation and differentiation of progenitor cells and subsequent organ morphology and function. Small GTPases of the Rho family are important regulators of cellular morphology and polarity. We recently identified ArhGEF18 as a key regulator of RhoA-Rock2 signaling that is crucial for maintenance of polarity in the vertebrate retinal epithelium. ArhGEF18 is required to maintain apico-basal polarity, localization of tight junctions and cortical actin, thus shaping cellular morphology. Loss of ArhGEF18 activity results in increased proliferation and reduced cell cycle exit. Together, these perturbations result in a severely misshaped embryonic eye, where the stereotype arrangement of retinal cell types is randomized. Our findings reveal an important role for RhoA-Rock2 signaling to maintain apico-basal polarity in retinal progenitor cells, which is essential for subsequent cellular differentiation, morphology and eventually organ function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011820PMC
http://dx.doi.org/10.4161/sgtp.27061DOI Listing

Publication Analysis

Top Keywords

progenitor cells
8
cellular morphology
8
rhoa-rock2 signaling
8
maintain apico-basal
8
apico-basal polarity
8
arhgef18
4
arhgef18 regulated
4
regulated rho
4
rho signaling
4
signaling vertebrate
4

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!