Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A fluorescence assay for measuring Na channel activation in liposomes containing voltage-sensitive Na channels isolated from Electrophorus electricus is described. The assay is based on transport of a heavy-metal cation, T1+, through the activated channel to quench fluorescence of an internalized, water-soluble chromophore. The channel is "locked" in a chronically opened configuration with alkaloid neurotoxins such as veratridine or batrachotoxin. Diffusion potentials are used to amplify the signal, and enlarged liposomes (greater than 8000 A) result in time courses extended to the range of seconds. Analysis of the kinetics of quenching yields parameters that behave as linear functions of channel activation and reflect vesicle size and channel abundance. The k1/2's for activation by veratridine and batrachotoxin were 5 microM and 169 nM, respectively, and that for tetrodotoxin blockade was 4 nM. Externally applied QX-222 and tetrodotoxin each acted to partially block the stimulated signal, as expected for compounds that act on oppositely oriented channels in the membrane. Single-channel conductances estimated with either veratridine or batrachotoxin ranged between 0.6 and 40.7 pS, corresponding to transport numbers of (1.2 X 10(5)) to (8.1 X 10(6)) ions s-1 channel-1 under the conditions of assay. The assay is approximately 100-fold more sensitive than radiotracer influx assays, requiring 1 fmol of protein per time course.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00356a047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!