The family context of autism spectrum disorders: influence on the behavioral phenotype and quality of life.

Child Adolesc Psychiatr Clin N Am

Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, USA.

Published: January 2014

This article reports the findings from a longitudinal program of research examining the bidirectional influences of the family environment on the behavioral phenotype of autism, and describes a newly developed family psychoeducation program, titled Transitioning Together, designed to reduce family stress, address behavior problems, and improve the overall quality of life of adolescents with autism and their families. A case study is presented that illustrates how Transitioning Together helps reduce family stress and improve the overall quality of the family environment. The article concludes with a discussion of directions for future research on best practices in working with families of children, adolescents, and adults with autism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891371PMC
http://dx.doi.org/10.1016/j.chc.2013.08.006DOI Listing

Publication Analysis

Top Keywords

behavioral phenotype
8
quality life
8
family environment
8
reduce family
8
family stress
8
improve quality
8
family
6
family context
4
autism
4
context autism
4

Similar Publications

Environmental Variation Influences Genome Evolution in Hispaniolan Trunk Anoles (Anolis distichus).

Mol Ecol

January 2025

Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA.

Environmental variation often drives evolutionary processes like population differentiation, local adaptation and speciation. We used genome-scale data to investigate the contribution of environmental variation to evolution of the North Caribbean bark anole (Anolis distichus), a widespread common lizard that exhibits impressive phenotypic variation across varying habitats on the island of Hispaniola. We obtained new double-digest restriction-associated DNA sequence data (ddRADseq) from nearly 200 individuals and used 53 GIS data layers representing a range of environmental variables.

View Article and Find Full Text PDF

Recent research has highlighted widespread dysregulation of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Here, we identify significant disruptions to 3` UTR polyadenylation in the ALS/FTLD-TDP mouse model rNLS8 that correlate with changes in gene expression and protein levels through the re-analysis of published RNA sequencing and proteomic data. A subset of these changes are shared with TDP-43 knock-down mice suggesting depletion of endogenous mouse TDP-43 is a contributor to polyadenylation dysfunction in rNLS8 mice.

View Article and Find Full Text PDF

Background: Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina.

View Article and Find Full Text PDF

Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain.

Nat Genet

January 2025

Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.

Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.

View Article and Find Full Text PDF

Male androgenetic alopecia.

An Bras Dermatol

January 2025

Department of Dermatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

Male androgenetic alopecia (MAA) is quite common and worsens with age, with a significant impact on quality of life, and is increasingly a reason for consultation with a dermatologist. The etiopathogenesis of MAA is multifactorial and genetic and hormonal influences stand out. MAA starts with the process of follicular miniaturization in diverse phenotypic patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!