In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2013.10.003 | DOI Listing |
Int J Biol Macromol
December 2024
Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China. Electronic address:
Technical alkaline lignin (TAL)-based composite films have been developed for anti-corrosion applications, during which one-component solvents, including acetone and ethanol, were employed. The poor solubility of TAL in the abovementioned solvents undoubtedly resulted in inhomogeneous surface micromorphology and the consequent unstable performance. The present study provides a series of ethylcellulose/TAL (EC/TAL) composite films with uniform surface microstructure by using the 1,4-dioxane/water binary solvent.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil. Electronic address:
β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required.
View Article and Find Full Text PDFBMC Biotechnol
December 2024
Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.
Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Biological and Processing for Bast Fiber Crops of Ministry of Agriculture and Rural Affairs, Engineering and Technology Center for Bast Fiber Crops of Hunan Province, Changsha 410205, China. Electronic address:
The inability to utilize pentose poses as a significant limitation to the production of cellulosic ethanol. To attain efficient raw material conversion and mitigate carbon dioxide emissions during cellulosic ethanol synthesis, a integrated approach focused on the co-processing of ethanol and succinic acid (SA) from peanut shells was proposed. The results demonstrated that the GVL system, containing 30 % water and catalyzed by dilute sulfuric acid, exhibited remarkable efficiency in pretreatment, boosting glucose yield sixfold relative to the untreated raw material.
View Article and Find Full Text PDFWaste Manag
December 2024
School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Shihezi, Xinjiang 832000, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:
Lignocellulosic biorefinery technology requires minimum energy consumption and wastewater generation to overcome challenges in industrial applications. This study established a rigorous model and a comprehensive physical property database of dry biorefining process on Aspen Plus platform for production including L-lactic acid, citric acid, sodium sugar acids, amino acid, and ethanol based on the experimental data. Full evaporation of wastewater (FEW) approach was proposed to completely replaced the external steam supply, and significantly reduced the freshwater input by 67% ∼ 85% and wastewater generation by 64% ∼ 89%, depending on the specific products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!