The aim of this study was to analyze the mechanism of the neuroprotective effect of hydroxytyrosol (HT) in an experimental model of hypoxia-reoxygenation in rat brain slices. After reoxygenation the increase in lactate dehydrogenase efflux was inhibited by HT in a concentration-dependent manner and dose-dependent inhibition after oral administration to rats for 7 days (1, 5 and 10 mg/kg per day). Maximum inhibition was 57.4% in vitro and 38.7% ex vivo. Hydroxytyrosol reduced oxidative stress parameters: it inhibited lipid peroxidation and increased enzymatic activities related with the glutathione system both in vitro and after oral administration to rats. The increase in prostaglandin E2 and interleukin 1β after reoxygenation were inhibited after incubation of brain slices with HT and after oral administration. The accumulation of nitric oxide in brain slices was reduced in a concentration-dependent manner. In conclusion, HT exerts a neuroprotective effect in a model of hypoxia-reoxygenation in rat brain slices, both in vitro and after 7 days of oral administration to rats. HT exerts an antioxidant activity and lowered some inflammatory markers in this model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2013.08.007 | DOI Listing |
Bio Protoc
December 2024
Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
Brain development is highly complex and dynamic. During this process, the different brain structures acquire new components, such as the cerebral cortex, which builds up different germinal and cortical layers during its development. The genetic study of this complex structure has been commonly approached by bulk-sequencing of the entire cortex as a whole.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia. Electronic address:
Background: Developmental and epileptic encephalopathies (DEE) are rare but severe neurodevelopmental disorders characterised by early-onset seizures often combined with developmental delay, behavioural and cognitive deficits. Treatment for DEEs is currently limited to seizure control and provides no benefits to the patients' developmental and cognitive outcomes. Genetic variants are the most common cause of DEE with KCNQ2 being one of the most frequently identified disease-causing genes.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China. Electronic address:
In response to stressors, individuals manifest varied behavioral responses directed toward satisfying physiological survival needs. Although the enduring effects of adolescent stress on both humans and animals are well-documented, the underlying mechanisms remain insufficiently elucidated. Utilizing immunofluorescence, viral injections, and brain slice electrophysiological recordings, we have delineated that heightened excitability among glutamatergic neurons in the basolateral amygdala (BLA) is responsible for inducing heightened exploratory behaviors in adolescent mice subjected to mild, chronic restraint stress.
View Article and Find Full Text PDFTomography
December 2024
Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan.
Objectives: We evaluated the noise reduction effects of deep learning reconstruction (DLR) and hybrid iterative reconstruction (HIR) in brain computed tomography (CT).
Methods: CT images of a 16 cm dosimetry phantom, a head phantom, and the brains of 11 patients were reconstructed using filtered backprojection (FBP) and various levels of DLR and HIR. The slice thickness was 5, 2.
J Imaging
November 2024
2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Central Nervous System (CNS) tumors represent a significant public health concern due to their high morbidity and mortality rates. Magnetic Resonance Imaging (MRI) has emerged as a critical non-invasive modality for the detection, diagnosis, and management of brain tumors, offering high-resolution visualization of anatomical structures. Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have shown potential in augmenting MRI-based diagnostic accuracy for brain tumor detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!