Excessive iodide and fluoride coexist in the groundwater in many regions, causing a potential risk to the human thyroid. To investigate the mechanism of iodide- and fluoride-induced thyroid cytotoxicity, human thyroid follicular epithelial cells (Nthy-ori 3-1) were treated with different concentrations of potassium iodide (KI), with or without sodium fluoride (NaF). Cell morphology, viability, lactate dehydrogenase (LDH) leakage, apoptosis, and expression of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were assessed. Results showed 50 mM of KI, 1 mM of NaF, and 50 mM of KI +1 mM of NaF changed cellular morphology, decreased viability, and increased LDH leakage and apoptosis. Elevated expression of binding protein (BiP), IRE1, and C/EBP homologous protein (CHOP) mRNA and protein, as well as spliced X-box-binding protein-1 (sXBP-1) mRNA, were observed in the 1 mM NaF and 50 mM KI +1 mM NaF groups. Collectively, excessive iodide and/or fluoride is cytotoxic to the human thyroid. Although these data do not manifest iodide could induce the IRE1 pathway, the cytotoxicity followed by exposure to fluoride alone or in combination with iodide may be related to IRE1 pathway-induced apoptosis. Furthermore, exposure to the combination of excessive iodide and fluoride may cause interactive effects on thyroid cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2013.11.001 | DOI Listing |
Dalton Trans
January 2025
Institut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
Inorg Chem
December 2024
Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.
The nonheme iron(II) complexes containing a fluoride anion, Fe(BNPAO)(F) () and [Fe(BNPAOH)(F)(THF)](BF) (), were synthesized and structurally characterized. Addition of dioxygen to either or led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe(BNPAO)(F)(μ-F)] (), which was characterized by single-crystal X-ray diffraction, H NMR, and elemental analysis. An iron(II)(iodide) complex, Fe(BNPAO)(I) (), was prepared and reacted with O to give the mononuclear complex -Fe(BNPAO)(OH)(I) ().
View Article and Find Full Text PDFMol Biol Rep
December 2024
Faculty of Life and Natural Sciences, Department of Bioengineering, Abdullah Gül University, Sumer Campus, Kayseri, 38080, Turkey.
Background: Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by disorders in stem cell differentiation and excessive proliferation resulting in clonal expansion of dysfunctional cells called myeloid blasts. The combination of chemotherapeutic agents with natural product-based molecules is promising in the treatment of AML. In this study, we aim to investigate the anti-cancer effect of Rapamycin and Niacin combination on THP-1 and NB4 AML cell lines.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Colleges Universities Key Laboratory of Optic-Electric Chemo/Biosensing and Molecular Recognition, Guangxi Minzu University, Nanning, 530006, China.
A dual supersaturation recrystallization method was employed to synthesize water-stable, highly sensitive cesium-lead halide perovskite nanocrystals (CsPbBr PNCs). The PNCs exhibited excellent water stability, a significant photoluminescence quantum efficiency of 83.03%, along with a narrow full width at half maximum (FWHM) of 20 nm.
View Article and Find Full Text PDFLangmuir
December 2024
ACA Berlin, Max-Planck-Str. 5, D-12489 Berlin, Germany.
This communication represents the chemical alternative to the previous two papers dealing with the influence of positively charged alkali cations on the adsorption properties of the series of the standard surfactant system of alkali-perfluorocarbon octanoates. Now, this contribution describes the adsorption properties of the negatively charged cationic surfactant series of trimethyldodecyl-ammonium halides. In our latest contributions, we have put forward a new model of adsorption of ionic surfactants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!