Betta splendens is a very important ornamental species. The current paper describes the embryonic and larval development of B. splendens under stereomicroscopy and scanning electron microscopy. Eggs and larvae from natural spawning were collected at different developmental stages at previously established intervals and analysed. The eggs of B. splendens are yellowish, clear, spherical, demersal, translucent and telolecithal with a large amount of yolk. Between 0-2 h post-initial collection (hpIC), the eggs were at the egg cell, first cleavage and morula stages. The blastula stage was identified at 2-3 hpIC and the early gastrula phase was observed at 3-4 hpIC with 20% epiboly, which was finalized after 13-18 hpIC. When the pre-larvae were ready to hatch, the appearance of somites and the free tail were observed, at 23-25 hpIC. At 29 hpIC, the majority of larvae had already hatched at an average temperature of 28.4 ± 0.2°C. The newly hatched larvae measured 2.47 ± 0.044 mm total length. The mouth opened at 23 h post-hatching (hPH) and the yolk sac was totally absorbed at 73 hPH. After 156 hPH, the heart was pumping blood throughout the entire larval body. The caudal fin, operculum and eyes were well developed at 264 hPH. When metamorphosis was complete at 768 hPH, the larvae became juveniles. The current study presents the first results about early development of B. splendens and provides relevant information for its reproduction, rearing and biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0967199413000488 | DOI Listing |
JAMA Cardiol
January 2025
National Heart and Lung Institute, Imperial College London, United Kingdom.
Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.
View Article and Find Full Text PDFWorld J Pediatr
January 2025
The First Hospital of Peking University, Beijing, China.
Background: Glucose transporter 1 deficiency syndrome (Glut1DS) was initially reported by De Vivo and colleagues in 1991. This disease arises from mutations in the SLC2A1 and presents with a broad clinical spectrum. It is a treatable neuro-metabolic condition, where prompt diagnosis and initiation of ketogenic dietary therapy can markedly enhance the prognosis.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, TS, Italy.
In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!