We examine the nonlinear response of a bistable system driven by a high-frequency force to a low-frequency weak field. It is shown that the rapidly varying temporal oscillation breaks the spatial symmetry of the centrosymmetric potential. This gives rise to a finite nonzero response at the second harmonic of the low-frequency field, which can be optimized by an appropriate choice of vibrational amplitude of the high-frequency field close to that for the linear response. The potential implications of the nonlinear vibrational resonance are analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.042904 | DOI Listing |
Nutr J
January 2025
Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
Objective: The objective of this study was to investigate the association between sarcopenia and liver fibrosis in patients aged 18-59 years with metabolic dysfunction-associated steatotic liver disease (MASLD) and to assess the potential of sarcopenia as a risk factor for the progression of liver fibrosis.
Methods: The study included 821 patients with MASLD in the US cohort and 3,405 patients with MASLD in the Chinese cohort. Liver controlled attenuation parameters (CAP) and liver stiffness measurements (LSM) were assessed by vibration-controlled transient elastography (VCTE) to evaluate the extent of hepatic steatosis and fibrosis.
Math Biosci Eng
December 2024
School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.
As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).
View Article and Find Full Text PDFSci Rep
January 2025
Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Testing Technology for Manufacturing Process MOE, Southwest University of Science and Technology, Mianyang 621010, China.
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
Coherent Raman scattering spectroscopies have been established as a powerful tool for investigating molecular systems with high chemical specificity. The existing coherent Raman scattering techniques detect only Raman active modes, which are a part of the whole molecular vibrations. Here, we report the first observation of coherent anti-Stokes hyper-Raman scattering (CAHRS) spectroscopy, which allows measuring hyper-Raman active vibrations at high speed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!