Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular dynamics simulations were carried out on a Lennard-Jones binary mixture of rigid (fixed bond length) diatomic molecules. The translational and rotational correlation functions, and the corresponding susceptibilities, exhibit two relaxation processes: the slow structural relaxation (α dynamics) and a higher frequency secondary relaxation. The latter is a Johari-Goldstein (JG) process, by its definition of involving all parts of the molecule. It shows several properties characteristic of the JG relaxation: (1) merging with the α relaxation at high temperature; (2) a change in temperature dependence of its relaxation strength on vitrification; (3) a separation in frequency from the α peak that correlates with the breadth of the α dispersion; and (4) sensitivity to volume, pressure, and physical aging. These properties can be used to determine whether a secondary relaxation in a real material is an authentic JG process, rather than more trivial motion involving intramolecular degrees of freedom. The latter has no connection to the glass transition, whereas the JG relaxation is closely related to structural relaxation, and thus can provide new insights into the phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.042307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!