The location and nature of the percolation transition in random networks is a subject of intense interest. Recently, a series of graph evolution processes have been introduced that lead to discontinuous percolation transitions where the addition of a single edge causes the size of the largest component to exhibit a significant macroscopic jump in the thermodynamic limit. These processes can have additional exotic behaviors, such as displaying a "Devil's staircase" of discrete jumps in the supercritical regime. Here we investigate whether the location of the largest jump coincides with the percolation threshold for a range of processes, such as Erdős-Rényipercolation, percolation via edge competition and via growth by overtaking. We find that the largest jump asymptotically occurs at the percolation transition for Erdős-Rényiand other processes exhibiting global continuity, including models exhibiting an "explosive" transition. However, for percolation processes exhibiting genuine discontinuities, the behavior is substantially richer. In percolation models where the order parameter exhibits a staircase, the largest discontinuity generically does not coincide with the percolation transition. For the generalized Bohman-Frieze-Wormald model, it depends on the model parameter. Distinct parameter regimes well in the supercritical regime feature unstable discontinuous transitions-a novel and unexpected phenomenon in percolation. We thus demonstrate that seemingly and genuinely discontinuous percolation transitions can involve a rich behavior in supercriticality, a regime that has been largely ignored in percolation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.042152 | DOI Listing |
Langmuir
January 2025
Applied Systems Analysis & Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Salt formations have been explored for the permanent isolation of spent nuclear fuel based on their high thermal conductivity, self-healing nature, and low hydraulic permeability to brine flow. Vacancy defect concentrations in salt complicate fracture mechanics not driven by dislocation dynamics and can influence the resulting surface structure. Classical molecular dynamic simulations were used to simulate tensile testing of salt crystals (halite) with vacancy defect concentrations of up to 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.
Three new sodium manganese fluoro-pyrophosphate compounds, namely, NaMn(PO)F (I), NaMn(PO)F (II), and NaMn(PO)F (III), have been synthesized by heating a mixture of NaPF, NaPOF or NaHPO with different Mn sources in NaNO and KNO fluxes. The structures of the title compounds were characterized single-crystal X-ray diffraction (XRD). II is characteristic of a shell of Na ions that encloses one [Mn(PO)F] unit, whereas I and III reveal three-dimensional (3D) frameworks that consist of MnO, Mn/NaOF octahedra or MnO octahedra and distorted MnO square pyramids with PO units, where Na cations reside in different-membered ring one-dimensional (1D) tunnels.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, India.
Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
E.T.S. de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid (España), 28040 Madrid, Spain.
Polymers are often insulators, but this not a universal intrinsic characteristic of all polymers. For this work, the adhesives used, epoxy and polyurethane, do demonstrate this insulating characteristic. However, there has been significant interest in the development of conductive polymers, specifically adhesives, because of the potential properties and ease of processing of these polymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!