Up to now, there have been a great number of studies that demonstrate the effect of spatial topology on the promotion of cooperation dynamics (namely, the so-called "spatial reciprocity"). However, most researchers probably attribute it to the positive assortment of strategies supported by spatial arrangement. In this paper, we analyze the time course of cooperation evolution under different evolution rules. Interestingly, a typical evolution process can be divided into two evident periods: the enduring (END) period and the expanding (EXP) period where the former features that cooperators try to endure defectors' invasion and the latter shows that perfect C clusters fast expand their area. We find that the final cooperation level relies on two key factors: the formation of the perfect C cluster at the end of the END period and the expanding fashion of the perfect C cluster during the EXP period. For deterministic rule, the smooth expansion of C cluster boundaries enables cooperators to reach a dominant state, whereas, the rough boundaries for stochastic rule cannot provide a sufficient beneficial environment for the evolution of cooperation. Moreover, we show that expansion of the perfect C cluster is closely related to the cluster coefficient of interaction topology. To some extent, we present a viable method for understanding the spatial reciprocity mechanism in nature and hope that it will inspire further studies to resolve social dilemmas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.042145 | DOI Listing |
mBio
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.
View Article and Find Full Text PDFLangmuir
January 2025
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China.
Cavitation has been a hot research topic for scholars in various fields because of the intense mechanical, chemical, and thermal effects of bubble collapse. It forms a cluster of bubbles, and the bubbles will affect, interfere with, and couple with each other. To grasp the main factors affecting bubble collapse and the interbubble mechanism, the paper adopts the molecular dynamics simulation combined with the coarse-grained force field to study the collapse process of the double bubble model and takes the dynamic shape change of the bubbles, the local velocity distribution, and the local pressure distribution as the object to summarize the position angle, the shock velocity, and the bubble distance on the collapse law and the primary and secondary influence relationship and then reveals the interbubble mechanism.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Pt/CeO single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric PtO structure. In this work, a highly active and stable Pt/CeO single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric PtO-oxygen vacancies (O) dual-active sites induced by well-dispersed NbO clusters.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.
Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.
Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).
J Glob Health
January 2025
Department of Medical Engineering, Peking University Third Hospital, Beijing, China.
Background: Inequity in healthcare resources has been identified as a global public health priority, yet the geographic variations and temporal trends in distribution and inequity in China remain unclear. We aimed to investigate these variations and temporal trends in healthcare resources and evaluate inequity in healthcare resource allocation in China.
Methods: In this nationwide descriptive study, we used provincial-level data on healthcare infrastructure, human, and service resources from 31 provinces of mainland China, publicly released by the National Health Commission of China between 2010-21.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!