Although studies have shown the oncogene WT1 is overexpressed in lung cancer, there is no data showing the implication of WT1 in lung cancer biology. In the present study, we first demonstrated that isotype C of WT1 was conservely overexpressed in 20 lung cancer patient specimens. Knockdown of WT1 by small interference RNA (siRNA) transfection resulted in a significant inhibition of cell proliferation, induction of cell cycle arrest at G1 phase, and the expression change of BCL-2 family genes in WT1+ A549 cells. Furthermore, we found that DDP treatment could decrease the WT1 mRNA expression level by 5% and 15% at a dose of 1 μg/ml, by 25% and 40% at a dose of 2 μg/ml for 24 and 48 h, respectively. In the mean time, DDP treatment also reduced the PI3K/AKT pathway activity. Further analysis by using siRNA targeting the AKT-1 and the PI3K pathway inhibitor Ly294002 revealed that the AKT-1 siRNA reduced the WT1 expression effectively in A549 cells, and the same result was observed in Ly294002 treated cells, indicating that DDP treatment could down regulate WT1 expression through the PI3K/AKT pathway. Of particular interest, knockdown of WT1 also inhibited the AKT expression effectively, Chip assay further confirmed that WT1 is a transcription factor of AKT-1. We thus concluded that there is a positive feedback loop between WT1 and AKT-1. Taken together, DDP treatment downregulates the WT1 expression through the PI3K/AKT signaling pathway, and there is a feedback between WT1 and AKT-1; WT1 is involved in cellular proliferation in A549 cells, WT1 inhibition in combination with DDP will provide a new light for lung cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833182PMC
http://dx.doi.org/10.1186/1475-2867-13-114DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
ddp treatment
16
wt1
15
pi3k/akt pathway
12
a549 cells
12
wt1 expression
12
wt1 involved
8
overexpressed lung
8
knockdown wt1
8
expression effectively
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!