To explore the new method of discriminating Astragali Radix and Hedysari Radix by using PCR amplification of specific alleles, 30 samples of the different Astragali Radix materials and 28 samples of Hedysari Radix were collected. The total DNA of all samples were extracted, trnL-trnF sequence from Astragali Radix and Hedysari Radix was amplified by PCR and sequenced unidirectionally. These sequences were aligned by using Clustul W. Primer was designed and the PCR reaction systems including annealing temperature, dNTP, etc were optimized. All samples were amplified by PCR with specific primer, DNA from Astragali Radix would be amplified 136 bp, whereas PCR products from all of Hedysari Radix were 323 bp. This method can detect 10% of intentional Hedysari Radix DNA into Astragali Radix. PCR amplification of alleles can be used to identify Astragali Radix and Hedysari Radix successfully and is an efficient molecular marker for authentication of Astragali Radix and Hedysari Radix.
Download full-text PDF |
Source |
---|
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
The widely used Radix Astragali (RA) has significant therapeutic effects on cognitive impairment (CI) caused by type 2 diabetes (T2DM). However, the effective active ingredients and the precise mechanism underly RA alleviation of T2DM-induced CI still require further study. In this study, we aim to elucidate whether and how jaranol, a key effective active ingredient in RA, influences CI in db/db mice.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China. Electronic address:
Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.
Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.
Front Pharmacol
December 2024
Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
Background: Bunge [Fabaceae; ] (AM), a traditional Chinese medicinal (TCM) botanical drug, has been used for centuries and is gaining growing recognition in medical research for its therapeutic potential. The currently accepted scientific name is Astragalus mongholicus Bunge, with Astragalus membranaceus Fisch. ex Bunge recognized as a taxonomic synonym.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Institute of Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, China.
Background: Processing methods of traditional Chinese medicinal materials are critical in influencing the active metabolites and pharmacological effects. The fresh processing method effectively prevents the loss and degradation of metabolites, common in traditional drying and softening processes, while also reducing production costs. (AR), a leguminous botanical drug, is widely utilized in clinical practice and functional foods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!