Different modulatory inputs commonly elicit distinct rhythmic motor patterns from a central pattern generator (CPG), but they can instead elicit the same pattern. We are determining the rhythm-generating mechanisms in this latter situation, using the gastric mill (chewing) CPG in the crab (Cancer borealis) stomatogastric ganglion, where stimulating the projection neuron MCN1 (modulatory commissural neuron 1) or bath applying CabPK (C. borealis pyrokinin) peptide elicits the same gastric mill motor pattern, despite configuring different gastric mill circuits. In both cases, the core rhythm generator includes the same reciprocally inhibitory neurons LG (lateral gastric) and Int1 (interneuron 1), but the pyloric (food-filtering) circuit pacemaker neuron AB (anterior burster) is additionally necessary only for CabPK rhythm generation. MCN1 drives this rhythm generator by activating in the LG neuron the modulator-activated inward current (IMI), which waxes and wanes periodically due to phasic feedback inhibition of MCN1 transmitter release. Each buildup of IMI enables the LG neuron to generate a self-terminating burst and thereby alternate with Int1 activity. Here we establish that CabPK drives gastric mill rhythm generation by activating in the LG neuron IMI plus a slowly activating transient, low-threshold inward current (ITrans-LTS) that is voltage, time, and Ca(2+) dependent. Unlike MCN1, CabPK maintains a steady IMI activation, causing a subthreshold depolarization in LG that facilitates a periodic postinhibitory rebound burst caused by the regular buildup and decay of the availability of ITrans-LTS. Thus, different modulatory inputs can use different rhythm-generating mechanisms to drive the same neuronal rhythm. Additionally, the same ionic current (IMI) can play different roles under these different conditions, while different currents (IMI, ITrans-LTS) can play the same role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893358 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3217-13.2013 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Türkiye.
The plant . is employed in both raw and cooked forms for the treatment of gastric diseases, as an expectorant, and for the treatment of warts and the enhancement of urine. A review of the scientific literature revealed no studies investigating the effect of (MN) water extract on gastric diseases.
View Article and Find Full Text PDFNutrients
December 2024
Food Chemistry and Nutraceutical Laboratory, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
Background: Three herbal extracts ( Willd., Lorentz, and L.) were mixed with three essential oils ( Mill.
View Article and Find Full Text PDFAnn Anat
February 2025
Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy.
Visfatin is an adipokine with mediatory effects on inflammation. It is expressed at low levels in the pig stomach, but its role in the gastrointestinal (GI) tract is not well understood. This study explored visfatin expression and localisation in the stomach and duodenum of piglets fed varying levels of polyphenols derived from olive mill waste extract, known for their antioxidant and immunomodulatory properties.
View Article and Find Full Text PDFThe spoon-tipped (ST) setae coverage and their abundance on the second maxillipeds as well as the morphology of the urocardiac and zygocardiac ossicles from the gastric mills of the four ocypodid species, viz., Austruca annulipes (H. Milne Edwards, 1837), Gelasimus vocans (Linnaeus), 1758, two typical deposit-feeding fiddler crabs, Petruca panamensis (Stimpson, 1859), an atypical herbivorous-cum-'sediment swallower' fiddler crab, and Ocypode ceratophthalmus (Pallas, 1772), an omnivorous ghost crab, were described and compared in relation to their respective trophic habits.
View Article and Find Full Text PDFPhytomedicine
December 2024
The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China. Electronic address:
Background: M2-polarized tumor-associated macrophages (TAMs) predominate in tumor microenvironment (TME) and serve primary functions in tumor progression, including growth, angiogenesis, metastasis, immunosuppression, chemoresistance, and poor prognosis. The reversal of M2 polarization provides a new treatment strategy for cancer. Presently, the molecular mechanisms of M2 polarization have yet to be fully characterized, and there is a lack of effective therapeutic targets and drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!