Natural and synthetic unsaturated glucuronides were tested as substrates for Clostridium perfringens unsaturated glucuronyl hydrolase to probe its mechanism and to guide inhibitor design. Of the natural substrates, a chondroitin disaccharide substrate with sulfation of the primary alcohol on carbon 6 of its N-acetylgalactosamine moiety was found to have the highest turnover number of any substrate reported for an unsaturated glucuronyl hydrolase, with kcat =112 s(-1) . Synthetic aryl glycoside substrates with electron-withdrawing aglycone substituents were cleaved more slowly than those with electron-donating substituents. Similarly, an unsaturated glucuronyl fluoride was found to be a particularly poor substrate, with kcat /Km =44 nM(-1) s(-1) -a very unusual result for a glycoside-cleaving enzyme. These results are consistent with a transition state with positive charge at carbon 5 and the endocyclic oxygen, as anticipated in the hydration mechanism proposed. However, several analogues designed to take advantage of strong enzyme binding to such a transition state showed little to no inhibition. This result suggests that further work is required to understand the true nature of the transition state stabilised by this enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201300547 | DOI Listing |
Int J Biol Macromol
December 2024
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China. Electronic address:
Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL).
View Article and Find Full Text PDFDrug Metab Dispos
September 2024
Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Research and Development, Groton, Connecticut.
UGT2B4 is a highly expressed drug-metabolizing enzyme in the liver contributing to the glucuronidation of several drugs. To enable quantitatively assessing UGT2B4 contribution toward metabolic clearance, a potent and selective UGT2B4 inhibitor that can be used for reaction phenotyping was sought. Initially, a canagliflozin-2'--glucuronyl transferase activity assay was developed in recombinant UGT2B4 and human liver microsomes (HLM) [±2% bovine serum albumin (BSA)].
View Article and Find Full Text PDFJ Agric Food Chem
July 2022
School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China.
The enzymatic pathway of xanthan depolymerization has been predicted previously; however, the β-glucosidase and unsaturated glucuronyl hydrolase in this system have not been cloned and characterized. This lack of knowledge hinders rational modification of xanthan and exploration of new applications. In this work, we report on the properties of Mibgl3, a xanthan-degrading enzyme isolated from sp.
View Article and Find Full Text PDFFront Microbiol
September 2020
Department of Viral Infection and International Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
Biochem Biophys Res Commun
March 2020
Research Institute of Molecular Genetics, Kochi University, 200 Monobe, Nankoku, Kochi, 783-8502, Japan. Electronic address:
Ulvan is a complex water-soluble sulfated polysaccharide in the cell wall of green algae belonging to genus Ulva. It is composed of l-rhamnose-3-sulfate (Rha3S), glucuronic acid (GluA), iduronic acid (IduA), and d-xylose (Xyl) distributed in three repetition moieties. The first step of a bacterial ulvan degradation is the cleavage of the β-glycosidic bond between Rha3S and GluA/IduA through a β-elimination mechanism by a ulvan lyase to produce oligo-ulvans with unsaturated 4-deoxy-L-threo-hex-4-enopyranosiduronate (Δ) at the non-reducing end.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!