Factors affecting PEG-mediated stable transformation of maize protoplasts.

Plant Cell Rep

Monsanto Agricultural Company, 700 Chesterfield Village Parkway, 63198, St. Louis, MO, USA.

Published: October 1990

Factors influencing the frequency of stable transformation and co-transformation of maize protoplasts utilizing a polyethylene glycol (PEG) mediated DNA uptake procedure have been investigated. Protoplast plating conditions, pre-treatment buffer composition, PEG concentration, and DNA concentration were all found to be important. Carrier DNA was not beneficial when transforming with circular plasmid DNA. The effect of linearizing plasmid DNA was inconsistent across experiments, and may be dependent on the presence of carrier DNA. Functional co-transformation of an unlinked marker gene (hygromycin phosphotransferase) was increased by increasing the ratio of nonselected:selected DNA, and varied from 39% at a 1∶1 ratio to 65% at a 100∶1 ratio. Under optimum conditions, up to 300 transformed calli were recovered per million input protoplasts. The protocol is simple, inexpensive, and effective, and is useful for studies in maize requiring large numbers of stably transformed or co-transformed cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00232864DOI Listing

Publication Analysis

Top Keywords

stable transformation
8
maize protoplasts
8
carrier dna
8
plasmid dna
8
dna
7
factors peg-mediated
4
peg-mediated stable
4
transformation maize
4
protoplasts factors
4
factors influencing
4

Similar Publications

NH-MIL-125(Ti) and its functional nanomaterials - a versatile platform in the photocatalytic arena.

Nanoscale

January 2025

Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.

Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.

View Article and Find Full Text PDF

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

Scientific-grade spectrometers with high hyperspectral resolution and high spectral accuracy are desirable in miniaturized optical systems to maintain stable and real-time spectral sampling. Fourier transform spectrometers that utilize high-precision moving mirrors generally struggle to enhance their miniaturization and stable real-time performance. A static infrared spectral measurement method is proposed that uses micro/nano-optical devices as the core of static interference and lightweight imaging.

View Article and Find Full Text PDF

Copper is ubiquitous as a structural material, and as a reagent in (bio)chemical transformations. A vast number of chemical reactions rely on the near-inevitable preference of copper for positive oxidation states to make useful compounds. Here we show this electronic paradigm can be subverted in a stable compound with a copper-magnesium bond, which conforms to the formal oxidation state of Cu(-I).

View Article and Find Full Text PDF

Energizing Robust Sulfur/Lithium Electrochemistry via Nanoscale-Asymmetric-Size Synergism.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!