Tuberculosis is known to have afflicted humans throughout history and re-emerged towards the end of the 20th century, to an extent that it was declared a global emergency in 1993. The aim of this study was to apply a rigorous analytical regime to the detection of Mycobacterium tuberculosis complex (MTBC) DNA in 77 bone and tooth samples from 70 individuals from Britain and continental Europe, spanning the 1st-19th centuries AD. We performed the work in dedicated ancient DNA facilities designed to prevent all types of modern contamination, we checked the authenticity of all products obtained by the polymerase chain reaction, and we based our conclusions on up to four replicate experiments for each sample, some carried out in an independent laboratory. We identified 12 samples that, according to our strict criteria, gave definite evidence for the presence of MTBC DNA, and another 22 that we classified as "probable" or "possible." None of the definite samples came from vertebrae displaying lesions associated with TB. Instead, eight were from ribs displaying visceral new bone formation, one was a tooth from a skeleton with rib lesions, one was taken from a skeleton with endocranial lesions, one from an individual with lesions to the sacrum and sacroiliac joint and the last was from an individual with no lesions indicative of TB or possible TB. Our results add to information on the past temporal and geographical distribution of TB and affirm the suitability of ribs for studying ancient TB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajpa.22417 | DOI Listing |
J Spinal Cord Med
January 2025
Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Context: This study aimed to investigate the characteristics, diagnosis, and management of tuberculous longitudinally extensive transverse myelitis (TB-LETM), a rare manifestation of tuberculosis.
Findings: We analyzed two rare cases of TB-LETM and discussed their clinical manifestations and imaging findings in the context of the relevant literature. Patient 1, a 23-year-old female, presented with quadriplegia and dysuria, and spinal magnetic resonance imaging (MRI) revealed lesions extending from C1 to T3.
( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFTuberculosis (TB) is historically the world's deadliest infectious disease. New TB drugs that can avoid pre-existing resistance are desperately needed. The β-lactams are the oldest and most widely used class of antibiotics to treat bacterial infections but, for a variety of reasons, they were largely ignored until recently as a potential treatment option for TB.
View Article and Find Full Text PDFThe recalcitrance of to antibiotic treatment has been broadly attributed to the impermeability of the organism's outer mycomembrane. However, the studies that support this inference have been indirect and/or reliant on bulk population measurements. We previously developed the P eptidoglycan A ccessibility C lick- M ediated A ssessme N t (PAC-MAN) method to covalently trap azide-modified small molecules in the peptidoglycan cell wall of live mycobacteria, after they have traversed the mycomembrane.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Tuberculosis Diagnosis and Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang Province, People's Republic of China.
Background: Immune checkpoint inhibitors (ICIs) have emerged as the first-line treatment for driver-negative advanced non-small cell lung cancer (NSCLC). However, there is uncertainty regarding the availability and timing of ICI initiation in patients with NSCLC combined with pulmonary tuberculosis (TB). Additionally, the implementation of dual therapy for anti-TB and anti-tumor treatment poses significant challenges in terms of avoiding drug-drug interactions and reducing adverse reactions during clinical diagnosis and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!