AI Article Synopsis

Article Abstract

The effects of oryzalin, a dinitroaniline herbicide, on chromosome behavior and on cellular microtubules (MTs) were examined by light microscopy and immunogold staining, respectively, in endosperm cells from Haemanthus katherinae Bak. Brief treatments with 1.0·10(-8) M oryzalin reduced markedly the migration rate of anaphase chromosomes and 1.0·10(-7) M oryzalin stopped migration abruptly. Oryzalin (1.0·10(-7) M) depolymerized MTs and prevented the polymerization of new MTs at all stages of the mitotic cycle. The chromosome condensation cycle was unaffected by oryzalin. Endothelial cells from the heart of Xenopus leavis showed no chromosomal or microtubular rearrangements after oryzalin treatment. The inhibition by oryzalin of the polymerization of tubulin isolated from cultured cells of Rosa sp. cv. Paul's scarlet was examined in vitro by turbidimetry, electron microscopy and polymer sedimentation analysis. Oryzalin inhibited the rapid phase of taxol-induced polymerization of rose MTs at 24°C with an apparent inhibition constant (K i ) of 2.59·10(6) M. Shorter and fewer MTs were formed with increasing oryzalin concentrations, and maximum inhibition of taxol-induced polymerization occurred at approx. 1:1 molar ratios of oryzalin and tubulin. Oryzalin partially depolymerized taxol-stabilized rose MTs. Ligand-binding experiments with [(14)C]oryzalin demonstrated the formation of a tubulin-oryzalin complex that was time- and pH-dependent. The tubulin-oryzalin interaction (24°C, pH 7.1) had an apparent affinity constant (K app) of 1.19·10(5) M(-1). Oryzalin did not inhibit taxol-induced polymerization of bovinebrain MTs and no appreciable binding of oryzalin to brain tubulin or other proteins was detected. The results demonstrate pharmacological differences between plant and animal tubulins and indicate that the most sensitive mode of action of the dinitroaniline herbicides is the direct poisoning of MT dynamics in cells of higher plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00394595DOI Listing

Publication Analysis

Top Keywords

oryzalin
14
taxol-induced polymerization
12
oryzalin dinitroaniline
8
dinitroaniline herbicide
8
rose mts
8
24°c apparent
8
mts
7
polymerization
6
herbicide binds
4
binds plant
4

Similar Publications

Background: Celosia argentea is a widely recognized plant for its ornamental qualities and therapeutic uses in traditional medicine. As demand for such multipurpose plants grows, enhancing its phenotypic and physiological traits could further expand its commercial potential. Polyploidization, particularly through chemical treatments like oryzalin, offers a method to induce genetic variation and potentially improve desirable traits in plants.

View Article and Find Full Text PDF

The disordered effector RipAO of Ralstonia solanacearum destabilizes microtubule networks in Nicotiana benthamiana cells.

Mol Cells

December 2024

Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Ralstonia solanacearum causes bacterial wilt, a devastating disease in solanaceous crops. The pathogenicity of R. solanacearum depends on its type III secretion system, which delivers a suite of type III effectors into plant cells.

View Article and Find Full Text PDF

Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability.

View Article and Find Full Text PDF

BEACH domain-containing protein SPIRRIG facilitates microtubule cytoskeleton-associated trichome morphogenesis in Arabidopsis.

Planta

October 2024

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China.

Article Synopsis
  • The study focuses on the role of SPI in the development of trichomes, specialized epidermal cells in plants, highlighting its influence on cytoskeleton organization and cell shape.
  • Researchers found that SPI affects microtubule stability during trichome branching; loss of SPI leads to abnormalities in trichome structures and sensitivity to microtubule-disrupting drugs.
  • The interaction between SPI and another protein, ZWI, shows that they work together to regulate microtubule dynamics, further influencing trichome morphology and overall plant cell shape development.
View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!