The synthesis of 7-azaindoles from 3-alkynyl-2-aminopyridines using acidic conditions, namely, a mixture of trifluoroacetic acid (TFA) and trifluoroacetic anhydride (TFAA), is described. This methodology resulted in the synthesis of fifteen 7-azaindoles, with most containing substituents at the 2- and 5-positions. The majority of these were tested for antimicrobial activity against a range of bacteria and yeasts. The 7-azaindoles displayed the best activity against the yeasts, particularly against Cryptococcus neoformans, where activities as low as 3.9 μg ml(-1) were observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3ob41798k | DOI Listing |
Asian J Org Chem
January 2025
Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.
A one-pot process was developed to synthesize in moderate to high yield a series of 2-substituted indoles and 7-azaindoles starting from 2-iodo--mesylarylamines and terminal alkynes in the presence of CuO in DMF at 90-120 °C. Without isolation of any intermediate, our optimized conditions enabled the introduction of ester, phenyl, hydroxymethyl, hydroxyethyl, -Boc-aminomethyl, and methyl at the 2-postion of indoles and 7-azaindoles. The reaction tolerates a variety of substrates containing halogens, or acid- or base-sensitive functional groups without requiring a Pd catalyst, a ligand, or a base.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
(3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids and and display a strong cytotoxic potential. We have recently shown that the novel derivative is highly cytotoxic in several lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells and predominantly targets cyclin-dependent kinases (CDKs). Here, we efficiently synthesized nine novel 2-aminopyridyl congeners (-), i.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
An iodine-catalyzed method has been reported for efficient regioselective C-3 sulfenylation, selenylation, thiocyanation, and selenocyanation of -free 7-azaindoles using thiophenols, diselenides, potassium thiocyanates, and selenocyanates, respectively. This approach showcases high efficiency and remarkable versatility, facilitating the synthesis of diverse chalcogenated 7-azaindoles. Additionally, the sulfenylated derivatives have been further diversified to generate a new array of benzothiophene-fused 7-azaindole cores of pharmaceutical interest.
View Article and Find Full Text PDFOrg Biomol Chem
March 2024
Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
A facile and metal-free intramolecular denitrogenative annulation strategy for the preparation of novel 2-aroyl 7-azaindoles has been developed from 3-(tetrazolo[1,5-]pyridin-8-yl)prop-2-en-1-one in the presence of the deep eutectic solvent Dowtherm A. The valuable features of the protocol include a short reaction time, absence of any metal catalyst, utilization of a eutectic solvent, easy product isolation, and very good yields of novel 2-aroyl 7-azaindoles.
View Article and Find Full Text PDFChem Asian J
March 2024
Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India.
An efficient and practical method for the N-alkynylation of 7-azaindoles has been established by using CuI/DMAP catalytic system at room temperature and in open air. This simple protocol has been successfully employed in the synthesis of a wide range of N-alkynylated 7-azaindoles with good yields. Also, this approach is well-suited for large-scale N-alkynylation reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!