Isolation and characterization of a novel phenanthrene (PHE) degrading strain Psuedomonas sp. USTB-RU from petroleum contaminated soil.

J Hazard Mater

School of Civil and Environmental Engineering, and National "International Cooperation Based on Environment and Energy", and Key Laboratory of "Metal and Mine Efficiently Exploiting and Safety" Ministry of Education, University of Science and Technology Beijing, 100083 Beijing, PR China; Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka.

Published: December 2013

The phenanthrene degrading novel bacterium strain USTB-RU was isolated from petroleum contaminated soil in Dagan oilfield, southeast of Tianjin, northeast China. The novel isolate was identified as Pseudomonas sp. USTB-RU on the basis of morphological, physicochemical characteristics and analysis of 16S rDNA gene sequence. The strain could degrade 86.65% of phenanthrene at an initial concentration of 100 mg L(-1) in 8 days and identified intermediate metabolite evident the biodegradation of phenanthrene through protocatechuate metabolic pathway. The strain showed the potential to produce surface-active compounds that may have caused for the resulted efficient biodegradation through enhancing the substrate bioavailability. The results highlighted that the adaptability of USTB-RU to grow in a range of temperature, pH and potential to utilize various commonly co-exist pollutants in contaminated site other than phenanthrene as sole carbon and energy source. Further, susceptibility of the strain for the tested antibiotics inferred the possibility to absence of risk of spreading drug resistant factor to other indigenous bacteria. Therefore, the isolated novel strain USTB-RU may have a high potential for application in in situ bioremediation of phenanthrene contaminated environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2013.10.007DOI Listing

Publication Analysis

Top Keywords

petroleum contaminated
8
contaminated soil
8
strain ustb-ru
8
phenanthrene
6
strain
6
ustb-ru
5
isolation characterization
4
novel
4
characterization novel
4
novel phenanthrene
4

Similar Publications

Foeniculum vulgare Miller bracts, revalorization of a local food waste.

Sci Rep

December 2024

Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Salerno, Italy.

This research aims at the valorization of fennel by-products from the Campania region (Southern Italy). A phytochemical characterization of the hydroalcoholic extracts (HEs) and of the essential oils (EOs) from edible and non-edible parts (waste) of Foeniculum vulgare Mill. was carried out using HRESIMS and GC-MS.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics, which has risks for human health. This study aimed to investigate BPA contents in canned fruit and vegetable samples using Gas Chromatography-Mass Spectrometry (GC-MS). Furthermore, health risks were assessed for Iranian adults and children using Monte Carlo simulations.

View Article and Find Full Text PDF

From indoors to outdoors: Impact of waste anesthetic gases on occupationally exposed professionals and related environmental hazards - a narrative review and update.

Environ Toxicol Pharmacol

December 2024

São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil. Electronic address:

Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards.

View Article and Find Full Text PDF

Dissemination mechanisms of unique antibiotic resistance genes from flowback water to soil revealed by combined Illumina and Nanopore sequencing.

Water Res

December 2024

Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China. Electronic address:

As a byproduct of shale gas extraction, flowback water (FW) is produced in large quantities globally. Due to the unique interactions between pollutants and microorganisms, FW always harbor multiple antibiotic resistance genes (ARGs) that have been confirmed in our previous findings, potentially serving as a point source for ARGs released into the environment. However, whether ARGs in FW can disseminate or integrate into the environmental resistome remains unclear.

View Article and Find Full Text PDF

Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQ), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!