Physics-based agent to simulant correlations for vapor phase mass transport.

J Hazard Mater

Decontamination Sciences Branch, U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424, United States. Electronic address:

Published: December 2013

Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2013.09.064DOI Listing

Publication Analysis

Top Keywords

chemical warfare
12
warfare agent
12
agent simulant
8
agent simulants
8
evaporating droplet
8
valid ranges
8
agent
6
vapor
5
physics-based agent
4
simulant
4

Similar Publications

Metabolic Characterization of Sarin, Cyclosarin, and Novichoks (A-230, A-232) in Human Liver Microsomes.

Chem Res Toxicol

January 2025

Collaborations Pharmaceuticals, Inc., 1730 Varsity Drivef, Suite 360, Raleigh, North Carolina 27606-5228, United States.

We have assessed the human liver microsomal (HLM) metabolism of the chemical warfare nerve agents' sarin (GB), cyclosarin (GF), and the Novichok agents A-230 and A-232. In HLM, GB showed drastically decreased stability ( = 1.4 h).

View Article and Find Full Text PDF

Discriminative detection of various organophosphorus nerve agents and analogues based on self-trapping probe coupled with SERS.

J Hazard Mater

January 2025

Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China. Electronic address:

Organophosphorus nerve agents (OPNAs) are highly lethal chemical warfare agents (CWAs), which poses a serious threat to human health and safety. The accurate and rapid identification of OPNAs is crucial for medical diagnosis and effective treatment. However, distinguishing between various OPNAs and their analogues using on-site point-of-care testing (POCT) remains challenging.

View Article and Find Full Text PDF

Sulfur mustard (SM) is a chemical warfare agent that increases oxidative stress in veterans. The literature assessing oxidant/antioxidant parameters in SM-exposed veterans contains conflicting results. A total of 11 relevant studies were identified and screened.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

We report the exfoliation of ultrathin gallium oxide (GaO) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These GaO films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on GaO provides a versatile platform for device fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!