We present a Cs atomic magnetometer with a sensitivity of 150fT/Hz(1/2) operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125μL tap water was detected at an ultralow magnetic field down to 47nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2013.10.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!