Background: Dravet syndrome (DS) is currently considered as an epileptic encephalopathy, a condition in which epilepsy causes deterioration or developmental delay but preliminary data suggested that cognitive course may worsen independently from epilepsy. Our objective was to prospectively analyze the neuropsychological features in a large cohort of DS patients and its relationships with epilepsy and SCN1A mutation.

Methods: 81 examinations were performed in 67 patients with typical DS (9m-24y, 15 longitudinally studied) using Brunet-Lezine (developmental/intelligence quotient [DQ/IQ] and DQ sub-scores), Achenbach, Conners, and a semi-quantitative psychomotor score (SQPS). We studied the correlation between DQ/IQ/SQPS and age, epilepsy characteristics, and whether patients presented SCN1A mutation.

Results: DQ/IQ significantly decreased with age (r = -.53, p < .001), from normal before 2y (mean 80, range 64-105) to low after 3y (mean 48, range 30-69), with hyperactivity and attention disorders hampering learning abilities especially up to 6y. However, raw (not age-adjusted) DQ sub-scores increased with age during the first decade, showing that there is no regression. We did not find any significant correlation between DQ/IQ at last evaluation and epilepsy data, i.e. first seizure (age, type, duration, fever), seizures during the course (type, fever sensitivity), status epilepticus (age of onset, number, fever), photosensitivity, and treatment, except for myoclonus and focal seizures which were associated with a lower QD/IQ after 3y. SCN1A mutated patients (n = 58) seemed to exhibit worse psychomotor course than non-mutated ones (n = 9) (severe SQPS in 26% vs 0%), although their epilepsy tended to be less severe (tonic seizures in 12% vs 44% [p = 0.04], first status epilepticus before 6 m in 26% vs 67% [p = .02], mean number of SE 2.5 vs 4.5 [p = .09]). DQ sub-scores were dissociated throughout the whole course: from onset hand-eye coordination was significantly lower than language, posture and sociability (p < .01). Dissociation seemed to be more frequent in mutated than in non-mutated patients (motor SQPS was normal for in 77% vs 44% [p = 0.017] whereas language SQPS was normal for 47% vs 100%).

Conclusions: Although psychomotor/cognitive delay declines with age, there is no regression. In addition, encephalopathy is not a pure consequence of epilepsy but SCN1A mutation seems to play an additional, direct role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225757PMC
http://dx.doi.org/10.1186/1750-1172-8-176DOI Listing

Publication Analysis

Top Keywords

dravet syndrome
8
pure consequence
8
epilepsy
8
consequence epilepsy
8
epilepsy scn1a
8
status epilepticus
8
sqps normal
8
age
6
patients
5
encephalopathy children
4

Similar Publications

Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52.

View Article and Find Full Text PDF

Circulating microRNAs as Biomarkers of Various Forms of Epilepsy.

Med Sci (Basel)

January 2025

Department of Medical Genetics, Clinical Neurophysiology of Postgraduate Education, V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Russian National Research, Krasnoyarsk 660022, Russia.

: Epilepsy is a group of disorders characterized by a cluster of clinical and EEG signs leading to the formation of abnormal synchronous excitation of neurons in the brain. It is one of the most common neurological disorders worldwide; and is characterized by aberrant expression patterns; both at the level of matrix transcripts and at the level of regulatory RNA sequences. Aberrant expression of a number of microRNAs can mark a particular epileptic syndrome; which will improve the quality of differential diagnosis.

View Article and Find Full Text PDF

Cause of Death Analysis in a 9½-Year-Old with COVID-19 and Dravet Syndrome.

Pathophysiology

January 2025

Division of Anatomical Pathology, Department of Pathology, College of Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.

: Cause of death analysis is fundamental to forensic pathology. We present the case of a 9½-year-old girl with a genetically confirmed diagnosis of Dravet syndrome who died in her sleep with no evidence of motor seizure. She also had a lifelong history of recurrent pneumonias and, along with her family, had tested positive for COVID-19 10 days before death.

View Article and Find Full Text PDF

variants cause a range of epilepsy syndromes, including Dravet syndrome, leading to early cognitive and functional impairment. Despite advances in medical management, drug-resistant epilepsy remains common. Vagal nerve stimulation (VNS) has been suggested reducing seizure frequency in these patients but there is a lack of long-term follow-up, quantitative analysis that corrected for confounding factors such as antiseizure medications (ASMs) and the impact of VNS settings on response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!