This paper is a report on a study which aimed to investigate the effect of different current density, pH, temperature, and cathode-anode combination on the removal of phenol and aldehyde in two samples of actual resin effluent through the process of electrocoagulation using solar energy. Current density 60 A/m(2) and pH 6 proved to be the best levels for both contaminants. As for the effect of temperature, although the highest degree of phenol and aldehyde removal was achieved at 15 °C, 25 °C was taken to be the optimum temperature for economic reasons. The Fe-Fe combination of electrodes was found to be the best as it led to nearly 93% of phenol removal and approximately 95% of aldehyde removal. Also, the effect of electrode combination on energy consumption was studied. It was observed that the Fe-Fe combination consumed the least amount of energy (0.7-4.3 kWh/m(3) of wastewater in the case of phenol and 0.8-4 kWh/m(3) of wastewater in the case aldehyde). Moreover, the Fe-Fe combination brought about the best results in terms of chemical oxygen demand removal: 93% in both cases. Finally, an economic analysis was performed for the electrocoagulation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2013.439 | DOI Listing |
Int J Mol Sci
January 2025
Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany.
is a natural antioxidant product that has the ability to improve the performance of poultry. Therefore, the present study aimed to evaluate the effect of using as a feed additive in broiler diets. A total of 252 daily male Ross 308 chicks were randomly assigned to six groups.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India.
Oxidation reactions are vital tools in synthetic organic chemistry. Oxidation of organic species such as alcohols, phenols, aldehydes and ketones provides synthetically valuable organic compounds, especially synthetic intermediates for several biologically active compounds. Some of these synthetic intermediates have shown their synthetic utility in the total synthesis of natural products.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:
Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.
View Article and Find Full Text PDFPakistani lignite (PLC) was thermally dissolved at 300 °C using isopropanol (IPA) to obtain a soluble portion (SP) and insoluble portion (ISP). Proximate analysis, ultimate analysis, Fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TG-DTG) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) results were compared to explore the influence of the thermal dissolution process on the pyrolysis for PLC and ISP. Results showed that the thermal dissolution process mainly dissolved some light components of low-rank coal, and more phenols, aldehydes, esters and ethers were found in the SP, indicating that low-carbon alcohols can break the ether bridge bond in coal and generate oxygen-containing organic compounds (OCOCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!