Xin is a striated muscle-specific protein that is localized to the myotendinous junction in skeletal muscle. However, in injured mouse muscle, Xin expression is up-regulated and observed throughout skeletal muscle fibers and within satellite cells. In this study, Xin was analyzed by immunofluorescent staining in skeletal muscle samples from 47 subjects with various forms of myopathy, including muscular dystrophies, inflammatory myopathies, mitochondrial/metabolic myopathy, and endocrine myopathy. Results indicate that Xin immunoreactivity is positively and significantly correlated (rs = 0.6175, P = <0.0001) with the severity of muscle damage, regardless of myopathy type. Other muscle damage measures also showed a correlation with severity [Xin actin-binding repeat-containing 2 (rs = -0.7108, P = 0.0006) and collagen (rs = 0.4683, P = 0.0783)]. However, because only Xin lacked immunoreactivity within the healthy muscle belly, any detectable immunoreactivity for Xin was indicative of muscle damage. We also investigated the expression of Xin within the skeletal muscle of healthy individuals subjected to damaging eccentric exercise. Consistent with our previously mentioned results, Xin immunoreactivity was increased 24 hours after exercise in damaged muscle fibers and within the activated muscle satellite cells. Taken together, these data demonstrate Xin as a useful biomarker of muscle damage in healthy individuals and in patients with myopathy. The strong correlation between the degree of muscle damage and Xin immunoreactivity suggests that Xin may be a suitable outcome measure to evaluate disease progression and treatment effects in clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2013.08.010DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
xin
5
muscle
5
xin marker
4
skeletal
4
marker skeletal
4
muscle damage
4
damage severity
4
severity myopathies
4
myopathies xin
4

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Herein, we aimed to examine the relationship between sarcopenia, neutrophil-lymphocyte ratio (NLR), Charlson comorbidity index (CCI), and prognostic nutritional index (PNI) in patients with superficial esophageal carcinoma who underwent definitive chemoradiotherapy (CRT).

Methods: We retrospectively analyzed 100 patients (87 males) diagnosed with cT1N0M0 esophageal squamous cell carcinoma. The included patients underwent CRT as an initial treatment.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

Selective Neurectomy with Regenerative Peripheral Nerve Interface Surgery for Facial Synkinesis.

Facial Plast Surg Aesthet Med

January 2025

Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.

Selective neurectomy (SN) typically leaves cut nerve endings to be either free-floating or buried in facial muscles. Regenerative peripheral nerve interfaces (RPNIs) use autologous skeletal muscle grafts to provide a nonfacial muscle target for reinnervation. To evaluate the effectiveness of RPNI surgery with SN for improving postoperative facial function through botulinum toxin use and facial movement metrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!