The resveratrol attenuates ethanol-induced hepatocyte apoptosis via inhibiting ER-related caspase-12 activation and PDE activity in vitro.

Alcohol Clin Exp Res

Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

Published: March 2014

Background: Endoplasmic reticulum (ER) stress plays a key role in cell apoptosis pathways. Caspase-12, a proapoptotic gene induced by ER stress, is also the key molecule in ER-related apoptosis. The purpose of this study is to evaluate the protective activity and possible mechanism of resveratrol (ResV) against ethanol (EtOH)-induced apoptosis in human hepatocyte Chang cell line.

Methods: The human hepatocyte Chang cell line was used to test the hypothesis that ResV may alleviate the liver cell apoptosis induced by EtOH. ER stress-inducible proteins and silent mating type information regulation 2 homolog 1 (SIRT1) were assayed by Western blot. Cell viability was studied by MTT assay and apoptosis was measured by Annexin-V and propidium iodide assay. Caspase-12 activation was examined by immunofluorescence staining. Alcohol dehydrogenase-2 (ADH-2) and aldehyde dehydrogenase-2 (ALDH-2) were measured by polymerase chain reaction amplified product length polymorphism. Phosphodiesterase (PDE) activity was assayed in cell lysates using a cyclic nucleotide PDE assay.

Results: EtOH exposure significantly increased the expression of ER stress markers and activated signaling pathways associated with ER stress. These include GRP78, p-IRE1α, p-eIF2α, p-PERK, ATF4 as well as cleaved caspase-3/12, CHOP/GADD153, and Bax in human hepatocyte Chang cell line. The expression of these proteins were significantly down-regulated by ResV (10 μM) in a SIRT1-dependent manner. ResV can inhibit EtOH-, tunicamycin-, thapsigargin-induced caspase-12 activation. ADH-2 and ALDH-2 activities are lower in this cell line. PDE activity increased by EtOH was inhibited by ResV (10 μM).

Conclusions: The results indicate that (i) EtOH-induced activation of caspase-12 could be one of the underlying mechanisms of hepatocyte apoptosis; (ii) EtOH-induced cell apoptosis was alleviated via ResV (10 μM) by inhibiting ER stress and caspase-12 activation in a SIRT1-dependent manner; and (iii) SIRT1 activated indirectly by ResV (10 μM) attenuates EtOH-induced hepatocyte apoptosis partly through inhibiting PDE activity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acer.12311DOI Listing

Publication Analysis

Top Keywords

caspase-12 activation
16
pde activity
16
hepatocyte apoptosis
12
cell apoptosis
12
human hepatocyte
12
hepatocyte chang
12
chang cell
12
resv 10 μm
12
apoptosis
9
cell
9

Similar Publications

Aging and voluntary exercise's effects on Aβ1-42 levels, endoplasmic reticulum stress factors, and apoptosis in the hippocampus of old male rats.

Brain Res

January 2025

Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:

Within the aging cortex, amyloid beta peptide (Aβ) is a crucial element of the senile plaques, a hallmark feature often observed in cases of Alzheimer's disease (AD). The UPR (unfolded protein response), a cellular mechanism for protein folding, is switched on by Aβ accumulation. Endoplasmic reticulum (ER) stress has been identified as playing a role in aging and the development of neurodegenerative diseases.

View Article and Find Full Text PDF

Downregulation of HSP47 Triggers ER Stress-mediated Apoptosis of Hypertrophic Chondrocytes Contributing to T-2 toxin-induced Cartilage Damage.

Environ Pollut

January 2025

School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China. Electronic address:

T-2 toxin contamination in food and feed is a growing global concern, with its toxic effects on developing cartilage remaining poorly understood. In this study, we constructed an animal model using 4-week-old male Sprague-Dawley rats, which were administered T-2 toxin (200 ng/g body weight per day) by gavage for one month. Histological analysis showed a significant reduction in hypertrophic chondrocytes and increased caspase-3 expression and TUNEL staining in the deep cartilage zone of T-2 toxin-treated rats.

View Article and Find Full Text PDF

This study aimed to investigate the molecular mechanisms of reactive oxygen species (ROS)-induced endoplasmic reticulum stress (ERS) in apoptosis and meat tenderization during postmortem aging. Yak longissimus dorsi muscle was incubated with N-acetylcysteine (NAC), 4-phenylbutyric acid (4-PBA) and NAC + 4-PBA, respectively, and stored at 4 °C for 0 h, 12 h, 24 h, 72 h, 120 h and 168 h. The results showed that NAC and 4-PBA treatments significantly reduced ROS content and endoplasmic reticulum stress levels.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is the age-associated, second most advanced neurodegenerative illness. Rotenone is an extensively used pesticide to study PD pathology and inhibits mitochondrial complex I. Reports indicate that rotenone exerts neurotoxicity by its capability to produce reactive oxygen species (ROS), which eventually leads to neuronal apoptosis.

View Article and Find Full Text PDF

The potential of adult adipose-derived stromal cells (ADSCs) to differentiate into astrocytes holds promise for future cell transplantation therapies. However, the growth of differentiated astrocytes is unstable, and their survival rate is low. Endoplasmic reticulum (ER) pathway mediated apoptosis is one of the causes of cell death, but whether there is ER stress response in the differentiation of ADSCs into astrocytes is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!