Background: Understanding the ecology and evolution of influenza A viruses (IAV) in mammalian hosts is critical to reduce disease burden in production animals and lower zoonotic infection risk in humans. Recent advances in influenza surveillance in US swine populations allow for timely epidemiological, phylogenetic, and virological analyses that monitor emergence of novel viruses and assess changes in viral population dynamics.

Methods: To better understand IAV in the North American swine population, we undertook a phylogenetic analysis of 1075 HA, 1049 NA, and 1040 M sequences of IAV isolated from US swine during 2009-2012 through voluntary and anonymous submissions to the US Department of Agriculture IAV swine surveillance system.

Results: Analyses revealed changes in population dynamics among multiple clades of A/H1N1, A/H3N2, and A/H1N2 cocirculating in US swine populations during 2009-2012. Viral isolates were categorized into one of seven genetically and antigenically distinct hemagglutinin lineages: H1α, H1β, H1γ, H1δ1, H1δ2, H1pdm09, and H3 cluster IV. There was an increase in occurrence of H1δ1 in samples submitted, with a concurrent decrease in H1pdm09. H3 cluster IV exhibited increasing diversification, warranting a re-evaluation of phylogenetic nomenclature criteria. Although H3N2 represented 25% of identified viruses, this subtype was reported in increasing proportion of sequenced isolates since late 2011.

Conclusions: Surveillance and reporting of IAV in US swine have increased since 2009, and we demonstrate a period of expanded viral diversity. These data may be used to inform intervention strategies of vaccine and diagnostic updates and changes in swine health management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655888PMC
http://dx.doi.org/10.1111/irv.12193DOI Listing

Publication Analysis

Top Keywords

population dynamics
8
swine
8
cocirculating swine
8
influenza viruses
8
swine populations
8
iav swine
8
h1pdm09 cluster
8
iav
5
population
4
dynamics cocirculating
4

Similar Publications

Molecular Epidemiology of Type F Among Diarrheal Patients and Virulence-Resistance Dynamics - 11 Provinces, China, 2024.

China CDC Wkly

January 2025

Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.

Introduction: Type F () represents a significant pathogen in human gastrointestinal diseases, primarily through its gene encoding enterotoxin (CPE). This investigation examined the prevalence, antimicrobial resistance patterns, and genetic characteristics of Type F within the Chinese population.

Methods: The study analyzed 2,068 stool samples collected from 11 provincial hospitals in 2024.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a growing threat to the efficacy of antimicrobials in humans and animals, including those used to control bovine respiratory disease (BRD) in high-risk calves entering western Canadian feedlots. Successful mitigation strategies require an improved understanding of the epidemiology of AMR. Specifically, the relative contributions of antimicrobial use (AMU) and contagious transmission to AMR emergence in animal populations are unknown.

View Article and Find Full Text PDF

Background and objective The institution of marriage is an essential building block of societal structure, acting as a catalyst for joyous celebrations and fresh beginnings. Nonetheless, a persistent problem related to marriage, especially from the viewpoint of women in Indian society, is the dowry system. Despite extensive criticism and opposition, the custom remains prevalent, manifesting in subtle as well as in overt ways.

View Article and Find Full Text PDF

Molecular dynamics of chemotactic signalling orchestrates dental pulp stem cell fibrosis during aging.

Front Cell Dev Biol

January 2025

Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.

Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!