Previous phylogenies, built using a subset of genomic loci, split Pseudomonas syringae pv. pisi into two well-supported clades and implied convergence in host range for these lineages. The analysis of phenotypic and genotypic data within the context of this phylogenetic relationship implied further convergence at the level of virulence gene loss and acquisition. We generate draft genome assemblies for two additional P. syringae strains, isolated from diseased pea plants, and demonstrate incongruence between phylogenies created from a subset of the data compared with the whole genomes. Our whole-genome analysis demonstrates that strains classified as pv. pisi actually form a coherent monophyletic clade, so that apparent convergence is actually the product of shared ancestry. We use this example to urge caution when making evolutionary inferences across closely related strains of P. syringae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638795PMC
http://dx.doi.org/10.1111/mpp.12103DOI Listing

Publication Analysis

Top Keywords

pseudomonas syringae
8
implied convergence
8
incongruence multi-locus
4
multi-locus sequence
4
sequence analysis
4
analysis mlsa
4
mlsa whole-genome-based
4
whole-genome-based phylogenies
4
phylogenies pseudomonas
4
syringae pathovar
4

Similar Publications

Versatile applications of cobalt and copper complexes of biopolymeric Schiff base ligands derived from chitosan.

Int J Biol Macromol

January 2025

Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India. Electronic address:

In the present study, biopolymeric Schiff base (SB) ligands were synthesized from chitosan and isatin. Consequently, their earth abundant transition metal complexes of cobalt and copper were synthesized. All compounds were extensively characterized using FTIR and UV spectroscopy, thermo-gravimetric (TG) analysis, X-ray powder diffraction (XRD) and FESEM (field emission scanning electron microscopy).

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Bacterial canker of kiwifruit is the most destructive bacterial disease caused by pv. . Bacteriophages are regarded as promising biocontrol agents against kiwifruit bacterial pathogens due to their exceptional host specificity and environmentally friendly nature.

View Article and Find Full Text PDF

Background: Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen.

View Article and Find Full Text PDF

LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit.

Plant Physiol

January 2025

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R.  China.

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!