Plantar tendons of the foot: MR imaging and US.

Radiographics

From the Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Room AG 278, Toronto, ON, Canada M4N 3M5 (A.D.); Department of Radiology, NYU Hospital for Joint Diseases, New York, NY (Z.S.R., J.T.B., D.B.B., G.A.C., R.S.A.); and CediMed, Medellin, Colombia (Z.R.V.).

Published: June 2014

Tendon disorders along the plantar aspect of the foot may lead to significant symptoms but are often clinically misdiagnosed. Familiarity with the normal anatomy of the plantar tendons and its appearance at magnetic resonance (MR) imaging and ultrasonography (US) is essential for recognizing plantar tendon disorders. At MR imaging, the course of the plantar tendons is optimally visualized with dedicated imaging of the midfoot and forefoot. This imaging should include short-axis images obtained perpendicular to the long axis of the metatarsal shafts, which allows true cross-sectional evaluation of the plantar tendons. Normal plantar tendons appear as low-signal-intensity structures with all MR sequences. At US, accurate evaluation of the tendons requires that the ultrasound beam be perpendicular to the tendon. The normal tendon appears as a compact linear band of echogenic tissue that contains a fine, mixed hypoechoic and hyperechoic internal fibrillar pattern. Tendon injuries can be grouped into six major categories: tendinosis, peritendinosis, tenosynovitis, entrapment, rupture, and instability (subluxation or dislocation) and can be well assessed with both MR imaging and US. The radiologist plays an important role in the diagnosis of plantar tendon disorders, and recognizing their imaging appearances at MR imaging and US is essential.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.337125167DOI Listing

Publication Analysis

Top Keywords

plantar tendons
20
tendon disorders
12
plantar
8
imaging
8
plantar tendon
8
tendon
6
tendons
5
tendons foot
4
foot imaging
4
imaging tendon
4

Similar Publications

Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed.

View Article and Find Full Text PDF

Background: Operative management of chronic Achilles tendinopathy with large defects can be surgically challenging. Concerns exist regarding transosseous transfer of the flexor hallucis longus (FHL) tendon because of the shortened lever arm of flexion and weakening of the big toe. The aim of this study was to demonstrate the 2-year outcome of transosseous FHL transfer for the treatment of large Achilles tendon defects.

View Article and Find Full Text PDF

Duplication of the Plantaris Tendon and Its Clinical Significance: A Case Report.

Cureus

December 2024

Orthopedics and Traumatology, Unidade Local de Saúde do Nordeste, Macedo de Cavaleiros, PRT.

The plantaris tendon may be absent in some individuals, indicating its unclear function. Anatomically, the plantaris tendon originates from the lateral femoral condyle and has a variable course and insertion point at the calcaneal tuberosity. The plantaris tendon may influence conditions such as Achilles tendinopathy, particularly in its midportion, whether by its close relation to the calcaneal tendon or adhesions between both tendons.

View Article and Find Full Text PDF

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Infrared thermography is an advanced technique that detects infrared light emitted by the body to map thermal changes related to blood flow. It is recognized for being noninvasive, fast, and reliable and is employed in the diagnosis and prevention of various medical conditions. In podiatry, it is utilized for managing diabetic foot ulcers, musculoskeletal injuries such as Achilles tendinopathy, and onychomycosis, among others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!