Changes in the stratum corneum extracellular matrix impair epidermal barrier function and may cause dermatoses. The aim of this study was to examine the effect of exogenous cholesterol application on skin barrier function and cutaneous inflammation. Skin barrier-disrupted or hapten-stimulated mice were treated with topical cholesterol. The effect of topical cholesterol application on an oxazolone (OXA)-induced hypersensitivity reaction was evaluated. Topical application of cholesterol efficiently decreased transepidermal water loss in areas of barrier-disrupted skin and ameliorated OXA-induced cutaneous hypersensitivity. These favourable effects may have resulted from sustained expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in the cholesterol-treated skin. As 11β-HSD1 is known to produce active cortisol, topical cholesterol may attenuate contact hypersensitivity by normalizing secretion of hormonally active cortisol from the skin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.12284DOI Listing

Publication Analysis

Top Keywords

topical cholesterol
16
cutaneous hypersensitivity
8
barrier function
8
cholesterol application
8
active cortisol
8
topical
5
cholesterol
5
skin
5
cholesterol treatment
4
treatment ameliorates
4

Similar Publications

The review aims to assess the potential of niosomes-nonionic surfactant-based vesicular systems-as carriers for topical and transdermal drug delivery. Niosomes enable targeted and controlled drug release while minimizing systemic toxicity. The investigation centers on their structure, stability, and capacity to entrap both hydrophilic and lipophilic drugs, as well as their use in managing various dermatological and systemic disorders.

View Article and Find Full Text PDF

Oleic acid liposomes (OALs) are novel vesicular carriers ofunsaturated fatty acids and their corresponding ionized species, arranged within an enclosed lipid bilayer. This study aimed to encapsulate moxifloxacin HCl (MOX), a broad-spectrum antibacterial drug into OALs for effective treatment of Methicillin-resistant Staphylococcus aureus (MRSA) infection through topical application. Various OALs were formulatedby combining varied quantities of phosphatidylcholine (PC), oleic acid (OA), and cholesterol (CH) with 50 mg of MOX.

View Article and Find Full Text PDF

Curcumin administration mitigates periodontitis-induced tissue damage in hypercholesterolemic rats: a natural preventive approach.

Odontology

December 2024

Facultad de Odontología. Cátedra de Bioquímica General y Bucal., Universidad de Buenos Aires, Marcelo T. de Alvear 2142 12 B, (C1122 AAH), Buenos Aires, Argentina.

This study investigated the preventive effect of curcumin (CUR) on tooth-supporting structures in hypercholesterolemic (HC) rats with periodontitis (P). Wistar rats (8 weeks old) (n = 30) were assigned to six groups based on dietary intake, CUR-piperine combination treatment and P induction. P was induced in four groups using a ligature model.

View Article and Find Full Text PDF

Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes.

View Article and Find Full Text PDF

While methyl-tertiary butyl ether (MTBE) remains the sole clinical topical agent for gallstone dissolution, its utility is limited due to side effects, largely stemming from its relatively low boiling point (55°C). In this study, we introduced 2-methoxy-6-methylpyridine (MMP), a novel gallstone-dissolving compound featuring an aromatic moiety and a substantially higher boiling point (156°C), designed to mitigate these side effects. We conducted a comprehensive evaluation of the efficacy and potential toxicities of MMP compared to MTBE using both in vitro and in vivo models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!