Mechanisms of load dependency of myocardial ischemia reperfusion injury.

Am J Cardiovasc Dis

Department of Oral Biology, College of Dental Medicine, Georgia Regents University Augusta, Georgia 30912, USA.

Published: November 2013

Coronary artery disease and associated ischemic heart disease are prevalent disorders worldwide. Further, systemic hypertension is common and markedly increases the risk for heart disease. A common denominator of systemic hypertension of various etiologies is increased myocardial load/mechanical stress. Thus, it is likely that high pressure/mechanical stress attenuates the contribution of cardioprotective but accentuates the contribution of cardiotoxic pathways thereby exacerbating the outcome of an ischemia reperfusion insult to the heart. Critical events which contribute to cardiomyocyte injury in the ischemic-reperfused heart include cellular calcium overload and generation of reactive oxygen/nitrogen species which, in turn, promote the opening of the mitochondrial permeability transition pore, an important event in cell death. Increasing evidence also indicates that the myocardium is capable of mounting a robust inflammatory response which contributes importantly to tissue injury. On the other hand, cardioprotective maneuvers of ischemic preconditioning and postconditioning have led to identification of complex web of signaling pathways (e.g., reperfusion injury salvage kinase) which ultimately converge on the mitochondria to exert cytoprotection. The present review is intended to briefly describe mechanisms of cardiac ischemia reperfusion injury followed by a discussion of our work focused on how pressure/mechanical stress modulates endogenous cardiotoxic and cardioprotective mechanisms to ultimately exacerbate ischemia reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819580PMC

Publication Analysis

Top Keywords

ischemia reperfusion
16
reperfusion injury
16
heart disease
8
systemic hypertension
8
pressure/mechanical stress
8
injury
6
reperfusion
5
mechanisms load
4
load dependency
4
dependency myocardial
4

Similar Publications

Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.

View Article and Find Full Text PDF

Background: Lung transplantation is the only effective therapeutic option for patients with end-stage lung disease. However, ischemia/reperfusion injury (IRI) during transplantation is a leading cause of primary graft dysfunction (PGD). Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has been implicated in IRI across various organs.

View Article and Find Full Text PDF

Background: The identification of new biomarkers that improve existing cardiovascular risk prediction models for acute coronary syndrome is essential for accurately identifying high-risk patients and refining treatment strategies. Autophagy, a vital cellular degradation mechanism, is important for maintaining cardiac health. Dysregulation of autophagy has been described in cardiovascular conditions such as myocardial ischemia-reperfusion injury, a key factor in myocardial infarction (MI).

View Article and Find Full Text PDF

Myocardial bridging resulting in an atypical acute coronary syndrome in a young athlete: a case report.

Eur Heart J Case Rep

January 2025

Service de Cardiologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, 37170 Chambray-Les-Tours, France.

Background: Myocardial bridging (MB) is considered a frequent and benign condition. However, some patients may experience symptoms. The recent ESC guidelines on sports participation provide guidance on the management of these symptomatic patients with MB but do not provide guidance in the presence of another cardiac pathology.

View Article and Find Full Text PDF

Female cardioprotection in ischemia/reperfusion: Isn't a SUR thing anymore?

J Mol Cell Cardiol Plus

December 2024

Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!