Microcin C analogues were recently envisaged as important compounds for the development of novel antibiotics. Two issues that may pose problems to these potential antibiotics are possible acquisition of resistance through acetylation and in vivo instability of the peptide chain. N-methylated aminoacyl sulfamoyladenosines were synthesized to investigate their potential as aminoacyl tRNA synthetase inhibitors and to establish whether these N-alkylated analogues would escape the natural inactivation mechanism via acetylation of the alpha amine. It was shown however, that these compounds are not able to effectively inhibit their respective aminoacyl tRNA synthetase. In addition, we showed that (D)-aspartyl-sulfamoyladenosine (i.e. with a (D)-configuration for the aspartyl moiety), is a potent inhibitor of aspartyl tRNA synthetase. However, we also showed that the inhibitory effect of (D)- aspartyl-sulfamoyladenosine is relatively short-lasting. Microcin C analogues with (D)-amino acids throughout from positions two to six proved inactive. They were shown to be resistant against metabolism by the different peptidases and therefore not able to release the active moiety. This observation could not be reversed by incorporation of (L)-amino acids at position six, showing that none of the available peptidases exhibit endopeptidase activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817062PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079234PLOS

Publication Analysis

Top Keywords

microcin analogues
12
trna synthetase
12
aminoacyl sulfamoyladenosines
8
analogues d-amino
8
d-amino acids
8
aminoacyl trna
8
n-alkylated aminoacyl
4
sulfamoyladenosines potential
4
potential inhibitors
4
inhibitors aminoacylation
4

Similar Publications

Many peptidic natural products, such as lasso peptides, cyclic peptides, and cyclotides, are conformationally constrained and show biological stability, making them attractive scaffolds for drug development. Although many peptides can be synthesized and modified through chemical methods, knot-like lasso peptides such as microcin J25 (MccJ25) and their analogues remain elusive. As the chemical space of MccJ25 analogues accessible through purely biological methods is also limited, we proposed a hybrid approach: flow-based chemical synthesis of non-natural precursor peptides, followed by transformation with recombinant maturation enzymes, to yield a more diverse array of lasso peptides.

View Article and Find Full Text PDF

Lasso peptide microcin J25 variant containing RGD motif as a PET probe for integrin a v ß 3 in tumor imaging.

Eur J Pharm Sci

January 2023

Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan. Electronic address:

Microcin J25 (MccJ25), a lasso peptide, has a unique 3-D interlocked structure that provides high stability under acidic conditions, at high temperatures, and in the presence of proteases. In this study, we generated a positron emission tomography (PET) probe based on MccJ25 analog with an RGD motif and investigated their pharmacokinetics and utility for integrin αβ imaging in tumors. The MccJ25 variant with an RGD motif in the loop region and a lysine substitution at the C-terminus (MccJ25(RGDF)GtoK) was produced in E.

View Article and Find Full Text PDF

Bacteriocins and reuterin are promising antimicrobials for application in food, veterinary, and medical sectors. In the light of their high potential for application in hand sanitizer, we investigated the skin toxicity of reuterin, microcin J25, pediocin PA-1, bactofencin A, and nisin Z in vitro using neutral red and LDH release assays on NHEK cells. We determined their skin sensitization potential using the human cell line activation test (h-CLAT).

View Article and Find Full Text PDF

Mannheimia haemolytica-induced bovine respiratory disease causes loss of millions of dollars to Canadian cattle industry. Current antimicrobials are proving to be ineffective and leave residues in meat. Antimicrobial peptides (AMPs) may be effective against M.

View Article and Find Full Text PDF

Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery.

Int J Mol Sci

February 2021

KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49-box 1041, 3000 Leuven, Belgium.

Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!