'Expansion ' concept as a new technique for expanding skin and soft tissue.

Exp Ther Med

Department of Microinvasive Plastic Surgery, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100144, P.R. China.

Published: November 2013

Techniques for expanding skin and soft tissue are widely used to repair damaged areas since they facilitate the provision of new, additional skin tissue with similar quality, texture and color to that surrounding the defective area. Conventional expansion techniques involve placing expanders under the normal skin adjacent to a lesion. However, these techniques may involve additional incisions, complications with blood supply and 'dog-ear' deformities and may result in a low utilization rate of the expanded tissue. When reconstructing small defects that may not be sutured directly, these shortcomings, particularly the requirement to make additional incisions, limit the application of conventional techniques. The current study presents a novel approach to expansion called the 'expansion ' technique. In this technique, the lesion is used as the center for expansion and expanders of optimal size are implanted under the lesion and surrounding normal soft tissue. Following expansion, the damaged area is excised directly. In order to avoid poor healing of the incision made during expander implantation, the overlapping suturing of both cut sides is conducted. This enlarges the contact area of both sides of the incision, thereby avoiding incision dehiscence and increasing wound healing during the expansion process. Between August 2006 and July 2011, the expansion technique was applied in 10 cases involving either nevus excision or scar removal. All 10 cases were treated successfully. Five of the cases were followed up over 1-3 years. The 'expansion ' technique is likely to be useful for avoiding additional incisions and improving the utilization rate of expanded skin flaps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820849PMC
http://dx.doi.org/10.3892/etm.2013.1269DOI Listing

Publication Analysis

Top Keywords

soft tissue
12
additional incisions
12
expanding skin
8
skin soft
8
techniques involve
8
utilization rate
8
rate expanded
8
'expansion technique
8
expansion
6
technique
5

Similar Publications

Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.

View Article and Find Full Text PDF

Epstein-Barr virus-associated smooth muscle tumors (EBV-SMTs) represent a rare category of soft tissue tumors that are predominantly seen in individuals with compromised immune systems. Pathologically, EBV-SMT has malignant potential because of its unpredictable nature. These tumors can manifest at various anatomical sites or even multiple lesions in different locations.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

Patterning soft materials with cell adhesion motifs can be used to emulate the structures found in natural tissues. While patterning in tissue is driven by cellular assembly, patterning soft materials in the laboratory most often involves light-mediated chemical reactions to spatially control the presentation of cell binding sites. Here we present hydrogels that are formed with two responsive crosslinkers-an anthracene-maleimide adduct and a disulfide linkage-thereby allowing simultaneous or sequential patterning using force and UV light.

View Article and Find Full Text PDF

Microsurgical Reconstruction of Complex Scalp Defects With Vastus Lateralis Free Flap.

Microsurgery

February 2025

Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy.

Background: Scalp reconstruction is a challenging field for plastic surgeons. In case of large or complex defects, microsurgical-free flaps are usually required. Reconstructive failure can result in high morbidity and in some cases be life-threatening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!