Quercetin is a hydrophobic agent with potential anticancer activity. The aim of the present study was to observe the effects of quercetin on the proliferation of the breast cancer cell line MCF-7 and the gene expression of survivin. The molecular mechanism underlying the antiproliferative effect of quercetin was also investigated. MCF-7 breast cancer cells were treated with various concentrations of quercetin. The inhibitory effect of quercetin on proliferation was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and the inhibition rate was calculated. Cellular apoptosis was detected by immunocytochemistry and survivin mRNA expression levels were observed using reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis was used to analyze changes in the expression levels of survivin protein. Quercetin induced the apoptosis of MCF-7 cells and inhibited the proliferation of the MCF-7 breast cancer cells in a time- and concentration-dependent manner. The mRNA and protein expression levels of survivin were reduced as the concentration of quercetin increased. Quercetin inhibited the growth of MCF-7 cells and promoted apoptosis by inducing G0/ G1 phase arrest. It also regulated the expression of survivin mRNA in MCF-7 cells, which may be the mechanism underlying its antitumor effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820718PMC
http://dx.doi.org/10.3892/etm.2013.1285DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
quercetin proliferation
12
cancer cells
12
expression survivin
12
expression levels
12
mcf-7 cells
12
effects quercetin
8
proliferation breast
8
quercetin
8
mechanism underlying
8

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how changes in the Ki67 biomarker before and after neoadjuvant chemotherapy (NACT) affect survival in patients with triple-negative breast cancer (TNBC).
  • Among 1,777 TNBC patients analyzed, most showed a decrease in tumor size and Ki67 levels after NACT, though many had no change or experienced treatment discontinuation.
  • Patients with unchanged Ki67 had significantly worse overall and disease-specific survival compared to those with decreased Ki67, emphasizing the need for personalized treatment strategies based on ongoing monitoring of this biomarker.
View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!