A new chelating ligand [4-methyl-2,6-bis-(pyridin-2-yl-hydrazonomethyl)-phenol] (1) was prepared by the condensation of 2-hydrazinylpyridine with 2,6-diformyl-p-cresol. Compound 1 exhibits weak fluorescence due to intramolecular photoinduced electron transfer (PET). The sensor (1) demonstrates Zn(2+)-specific emission enhancement due to the “PET off” process through a 1:1 binding mode with the metal ion. The fluorescence quantum yield of chemosensor 1 is only 0.020, and it increases more than 14-fold (0.280) in the presence of one equivalent of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to remain either unchanged or weakened except for Cd(2+). The new sensor showed ‘naked-eye’ detection of Zn(2+) ions: a color change of the solution from colorless to yellow. Ratiometric displacement of Cd(2+) ions from the complex by Zn(2+) ions supports the formation of a more stable sensor–Zn(2+) complex over the sensor–Cd(2+) complex. The experimental findings have been correlated with theoretical results using the B3LYP functional and 6-31G (d, p), LANL2DZ basis set for Cd(2+) (2) and Zn(2+) (3) complexes, respectively, by the Density Functional Theory (DFT) method. Moreover, the ability of probe 1 to sense Zn(2+) within human melanoma cancer cells has been explored, and the Zn(2+)-probing process in living cells was found to be reversible with zinc chelator solution of N,N,N,N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or EDTA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3an01750h | DOI Listing |
Talanta
April 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
A novel dual-mode electrochemiluminescence (ECL)/photoelectrochemistry (PEC) biosensor was developed for sensitive serotonin detection. In this system, the PEC signal was produced by CdS quantum dots (QDs), while the ECL signal originated from L-Au NPs (luminol decorated Au nanoparticles), thereby avoiding the external interference and signal fluctuations that typically arose from using the same materials for both signals. The presence of target serotonin initiated the non-enzymatic toehold-mediated strand displacement reaction (TSDR) on magnetic bead (MB), which was followed by catalytic hairpin assembly (CHA) on the sensing interface, leading to the aggregation of many L-Au NPs.
View Article and Find Full Text PDFTalanta
March 2025
State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China. Electronic address:
ACS Appl Mater Interfaces
November 2024
Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, Hunan, China.
Alzheimer's disease (AD) is a widely prevalent neurodegenerative condition globally, arousing significant interest in the noninvasive early detection of the disease. The concentration of amyloid β (Aβ) biomarkers in the blood is closely linked to the progression of AD, emphasizing the importance of developing a precise method for detecting these biomarkers in blood samples for early diagnosis. In this study, we developed a ratiometric electrochemical aptamer-based (EAB) biosensor for accurate detection of Aβ and Aβ.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, 143001 (pb.), India.
The interplay of ESIPT+TICT mechanisms in 1,8-naphthalimide-hydroxyquinoline (NQ-OH) molecular rotor were reported for the near-IR 'turn-on' emission (λ 600 nm) and ratiometric (A/A) absorbance-based detection of Al ions in aqueous medium and live cells which were supported by NMR, IR and CV techniques. The limit of detection (LOD) for Al ions is 100 nM and 14.57 nM.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!