A water-soluble, proteinaceous preparation derived from the cell walls of Salmonella typhimurium Re mutants has recently been tested in our laboratory for its ability to act as a mitogen for rat lymphocytes. We have found this preparation (STM) to be a potent stimulator of B lymphocyte proliferation, as measured both by 3H-TdR incorporation and by cell cycle analysis performed with flow cytofluorometry. STM stimulates approximately 50% of rat B cells to enter cycle. Previous investigations by others have shown that at least two sets of signals are required for B cell differentiation; a) proliferation signals that may consist of both a stimulator of B cell conversion from G0 to G1 and growth factors, and b) differentiation signals that probably include at least two B cell differentiation factors (BCDF). When STM was tested in a differentiation system it did not drive purified B cells to differentiate to PFC, either alone or when supplemented with a supernatant from concanavalin A-stimulated spleen cells (CAS). However, when both CAS and dextran sulfate (DXS) were supplied to the STM-stimulated cells, a large number of PFC resulted. DXS does not act by stimulating an additional, CAS-responsive B cell subset, since it has only a marginal effect upon 3H-TdR uptake and does not increase the number of B cells in cycle when used together with STM. We postulate that the two agents may be acting sequentially: STM stimulates the B cells to proliferate, and DXS drives the proliferating cells to become responsive to CAS. This suggests that the signals for B cell differentiation must consist of at least three activities: a trigger to stimulate the cells to proliferate, a factor to drive the cells to a BCDF-responsive state, and a BCDF that can drive the cells to secrete antibody.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell differentiation
12
cells
11
rat cells
8
signals required
8
stm stimulates
8
cells proliferate
8
drive cells
8
cell
7
differentiation
6
signals
5

Similar Publications

Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining.

View Article and Find Full Text PDF

A Neuron-Like Cellular Model for Severe Tinnitus Associated with Rare Variations in the ANK2 Gene.

Mol Neurobiol

January 2025

Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.

Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion.

View Article and Find Full Text PDF

FOXG1 promotes osteogenesis of bone marrow-derived mesenchymal stem cells by activating autophagy through regulating USP14.

Commun Biol

January 2025

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.

View Article and Find Full Text PDF

This study compared two Annona squamosa L. cultivars, Abdelrazik (Annona A.) and Balady (Annona B.

View Article and Find Full Text PDF

The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!