This article describes the investigation of direct electron transfer (DET) between glucose oxidase (GOD) and the electrode materials in an enzyme-catalyzed reaction for the development of improved bioelectrocatalytic system. The GOD pedestal electrochemical reaction takes place by means of DET in a tailored Vulcan carbon paste electrode surfaces with GOD and chitosan (CS), allowing efficient electron transfer between the electrode and enzyme. The key understanding of the stability, biocatalytic activity, selectivity, and redox properties of these enzyme-based glucose biosensors is studied without using any reagents, and the properties are characterized using electrochemical techniques like cyclic voltammogram, amperometry, and electrochemical impedance spectroscopy. Furthermore, the interaction between the enzyme and the electrode surface is studied using ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The present glucose biosensor exhibited better linearity, limit of detection (LOD = 0.37 ± 0.02 mol/L) and a Michaelis-Menten constant of 0.40 ± 0.01 mol/L. The proposed enzyme electrode exhibited excellent sensitivity, selectivity, reproducibility, and stability. This provides a simple "reagent-less" approach and efficient platform for the direct electrochemistry of GOD and developing novel bioelectrocatalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-013-0642-z | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.
Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.
The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.
View Article and Find Full Text PDFMikrochim Acta
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Theoretical Physics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!