Purpose: Mutations in GPR179, which encodes the G protein-coupled receptor 179, lead to autosomal recessive complete (c) congenital stationary night blindness (CSNB), which is characterized by an ON-bipolar retinal cell dysfunction. This study further defined the exact site of Gpr179 expression and its protein localization in human retina and elucidated the pathogenic mechanism of the reported missense and splice site mutations.
Methods: RNA in situ hybridization was performed with mouse retinal sections. A commercially available antibody was validated with GPR179-overexpressing COS-1 cells and applied to human retinal sections. Live-cell extracellular staining along with subsequent intracellular immunolocalization and ELISA studies were performed using mammalian cells overexpressing wild-type or missense mutated GPR179. Wild-type and splice site-mutated mini-gene constructs were transiently transfected, and RNA was extracted. RT-PCR-amplified products were cloned, and Sanger sequenced.
Results: Mouse Gpr179 transcript was expressed in the upper part of the inner nuclear layer, and the respective human protein localized at the dendritic tips of bipolar cells in human retina. The missense mutations p.Tyr220Cys, p.Gly455Asp, and p.His603Tyr led to severely reduced cell surface localization, whereas p.Asp126His did not. The mutated splice donor site altered GPR179 splicing.
Conclusions: Our findings indicate that the site of expression and protein localization of human and mouse GPR179 is similar to that of other proteins implicated in cCSNB. For most of the mutations identified so far, loss of the GPR179 protein function seems to be the underlying pathogenic mechanism leading to this form of cCSNB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.13-12610 | DOI Listing |
Nat Commun
September 2024
Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179.
View Article and Find Full Text PDFeNeuro
February 2024
Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville KY 40202.
Daylight vision is mediated by cone photoreceptors in vertebrates, which synapse with bipolar cells (BCs) and horizontal (HCs) cells. This cone synapse is functionally and anatomically complex, connecting to 8 types of depolarizing BCs (DBCs) and 5 types of hyperpolarizing BCs (HBCs) in mice. The dendrites of DBCs and HCs cells make invaginating ribbon synapses with the cone axon terminal, while HBCs form flat synapses with the cone pedicles.
View Article and Find Full Text PDFVision Res
August 2023
Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
Congenital stationary night blindness (CSNB) is a group of inherited retinal diseases in which either rod-to-ON-bipolar cell (ON-BC) signaling, or rod function is affected leading to impaired vision under low light conditions. One type of CSNB is associated with defects in genes (NYX, GRM6, TRPM1, GPR179, and LRIT3) involved in the mGluR6 signaling cascade at the ON-BC dendritic tips. We have previously characterized a canine model of LRIT3-CSNB and demonstrated short-term safety and efficacy of an ON-BC targeting AAV-LRIT3 (AAV-shGRM6-cLRIT3-WPRE) gene therapy.
View Article and Find Full Text PDFEpigenomics
December 2022
Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
To identify differential methylation related to prescribed opioid use. This study examined whether blood DNA methylation, measured using Illumina arrays, differs by recent opioid medication use in four population-based cohorts. We meta-analyzed results (282 users; 10,560 nonusers) using inverse-variance weighting.
View Article and Find Full Text PDFProg Retin Eye Res
March 2023
Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!