Patterns of innervation were examined in tandem muscle spindles teased from silver-stained muscles of the cat neck. Each tandem spindle was composed of two or more encapsulated receptors linked in series by a shared bag2 fiber. In most tandem spindles, two different types of encapsulation were identified according to differences in their intrafusal fiber content. One type, the b1b2c unit, contained typical bag1, bag2, and chain fibers and was structurally similar to single spindles described in other cat muscles. Each b1b2c unit contained a single primary sensory ending and 1-6 secondary endings. Fusimotor innervation was supplied by many axons. Some fusimotor axons ended in trail ramifications on bag2 and chain fibers, others ended in plates on the bag1 or long chain fiber. The other type of tandem encapsulation, the b2c unit, had only bag2 and chain fibers in its intrafusal fiber bundle. The b2c unit was usually supplied by only one sensory axon that ended on the nucleated part of the intrafusal fiber bundle. This single ending had a more variable terminal morphology than the primary ending in b1b2c units. A few b2c units (3/49) were also supplied by a secondary ending. The fusimotor innervation of the b2c unit was relatively simple. A single pole of the b2c unit was usually supplied by only one to three axons, all ending in trail ramifications. No plate endings were found in b2c units. These morphological specializations suggest that b1b2c and b2c units in tandem spindles differ in both their transductive and fusimotor mechanisms. Thus, the tandem spindle is a specialized structure that may provide additional proprioceptive information beyond that available from single muscle spindles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.902450405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!