A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental renal progenitor cells: repairing and recreating kidneys? | LitMetric

Experimental renal progenitor cells: repairing and recreating kidneys?

Pediatr Nephrol

Nephro-Urology Unit, UCL Institute of Child Health, 30 Guilford Street, London, UK.

Published: April 2014

Strategies to facilitate repair or generate new nephrons are exciting prospects for acute and chronic human renal disease. Repair of kidney injury involves not just local mechanisms but also mobilisation of progenitor/stem cells from intrarenal niches, including papillary, tubular and glomerular locations. Diverse markers characterise these unique cells, often including CD24 and CD133. Extrarenal stem cells may also contribute to repair, with proposed roles in secreting growth factors, transfer of microvesicles and exosomes and immune modulation. Creating new nephrons from stem cells is beginning to look feasible in mice in which kidneys can be dissociated into single cells and will then generate mature renal structures when recombined. The next step is to identify the correct human markers for progenitor cells from the fetus or mature kidney with similar potential to form new kidneys. Intriguingly, development can continue in vivo: whole foetal kidneys and recombined organs engraft, develop a blood supply and grow when xenotransplanted, and there are new advances in decellularised scaffolds to promote differentiation. This is an exciting time for human kidney repair and regeneration. Many of the approaches and techniques are in their infancy and based on animal rather than human work, but there is a rapid pace of discovery, and we predict that therapies based on advances in this field will come into clinical practice in the next decade.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00467-013-2667-5DOI Listing

Publication Analysis

Top Keywords

progenitor cells
8
stem cells
8
cells
7
experimental renal
4
renal progenitor
4
cells repairing
4
repairing recreating
4
recreating kidneys?
4
kidneys? strategies
4
strategies facilitate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!