Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous studies at an oil refinery in Saint John, New Brunswick, Canada, found a diminished fish community downstream of the effluent outfall that appeared to be associated with periodic low dissolved oxygen concentrations due to episodic discharges of contaminated transport vessel ballast water. This study was initiated after the ballast water was removed from the effluent to further investigate the potential causes of residual effects in the study stream, Little River. We used field caging of fish, laboratory bioassays, and chemical analysis of effluents and sediments from the field site to determine if the effluent or contaminated sediments were affecting the recovery of the fish community in Little River. The field studies suggested that exposed, caged fish were affected, displaying >40 % increases in liver sizes and increased liver detoxification enzyme activity (cytochrome P450 1A, CYP1A); however, similar responses were absent in laboratory exposures that used effluent only. Adding sediments collected from the vicinity of the refinery's outfall to the laboratory bioassays reproduced some of the field responses. Chemical analyses showed high concentrations of PAHs in sediments but low concentrations in the effluent, suggesting that the PAHs in the sediment were contributing more to the impacts than the effluent. Application of effects-based monitoring is suggested as beneficial to identify impacts to fisheries where refinery effluents of this type are involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-013-9954-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!