There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular imaging generally relies on imaging agents. Mixed lanthanide oxide nanoparticles could be valuable materials for dual magnetic resonance imaging (MRI)-fluorescent imaging (FI) because they have both excellent and diverse magnetic and fluorescent properties useful for dual MRI-FI, depending on lanthanide ions used. Since they are mixed nanoparticles, they are compact, robust, and stable, which is extremely useful for biomedical applications. They can be also easily synthesized with facile composition control. In this study, we explored three systems of ultrasmall mixed lanthanide (Dy/Eu, Ho/Eu, and Ho/Tb) oxide nanoparticles to demonstrate their usefulness as dual T2 MRI-FI agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826100PMC
http://dx.doi.org/10.1038/srep03210DOI Listing

Publication Analysis

Top Keywords

mixed lanthanide
12
oxide nanoparticles
12
dual imaging
12
molecular imaging
12
imaging
10
lanthanide oxide
8
diagnosing diseases
8
dual mri-fi
8
dual
6
mixed
4

Similar Publications

Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

There is still much to be learned about the properties of siderophores and their applications. This study was designed to characterize and optimize the production of the siderophore produced by a marine bacterium Pseudomonas sp. strain ASA235 and then evaluate their use in bioleaching of rare earth elements (REEs) from spent Nickel-metal hydride (NiMH) batteries.

View Article and Find Full Text PDF

Lanthanide-polyoxometalate-based self-erasing luminescent hydrogels with time-dependent and resilient properties for advanced information encryption.

Mater Horiz

January 2025

Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

In such an era of information explosion, improving the level of information security is still a challenging task. Self-erasing luminescent hydrogels are becoming ideal candidates for improving the level of information security with simple encryption and decryption methods. Herein, a lanthanide-polyoxometalate-based self-erasing luminescent hydrogel with time-dependent and resilient properties was constructed through a covalent crosslinked network constructed with polyacrylamide and a non-covalent crosslinked network constructed with [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride/NaDyWO, along with doping urease.

View Article and Find Full Text PDF

This work presents the synthesis and characterization of three isomorphous lanthanide-based metal-organic frameworks (Ln-MOFs) (Ln=Eu (1), Tb (2), and Sm (3)) supported by a pyridine-2,6-dicarboxamide-based linker offering appended arylcarboxylate groups. Single crystal X-ray diffraction studies highlight that these Ln-MOFs present three-dimensional porous architectures offering large cavities decorated with hydrogen bonding (H-bonding) groups. These Ln-MOFs display noteworthy luminescent characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!