Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries.

Nat Commun

1] Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3].

Published: June 2014

Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated as it has a critical role in the operation of rechargeable lithium-oxygen batteries. Here we report the electrode design principle to improve specific capacity and cycling performance of lithium-oxygen batteries by utilizing high-efficiency nanocatalysts assembled by M13 virus with earth-abundant elements such as manganese oxides. By incorporating only 3-5 wt% of palladium nanoparticles in the electrode, this hybrid nanocatalyst achieves 13,350 mAh g(-1)(c) (7,340 mAh g(-1)(c+catalyst)) of specific capacity at 0.4 A g(-1)(c) and a stable cycle life up to 50 cycles (4,000 mAh g(-1)(c), 400 mAh g(-1)(c+catalyst)) at 1 A g(-1)(c).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930201PMC
http://dx.doi.org/10.1038/ncomms3756DOI Listing

Publication Analysis

Top Keywords

lithium-oxygen batteries
20
cycle life
8
specific capacity
8
mah g-1c
8
mah g-1c+catalyst
8
batteries
6
lithium-oxygen
5
biologically enhanced
4
enhanced cathode
4
cathode design
4

Similar Publications

The utilization of redox mediators (RMs) in lithium-oxygen batteries (LOBs) has underscored their utility in high overpotential during the charging process. Among the currently known RMs, it is exceptionally challenging to identify those with a redox potential capable of attenuating singlet oxygen (O) generation while resisting degradation by reactive oxygen species (ROS), such as O and superoxide (O ). In this context, computational and experimental approaches for rational molecular design have led to the development of 7,7'-bi-7-azabicyclo[2.

View Article and Find Full Text PDF

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-oxygen batteries theoretically provide high energy, but practical discharge capacity is hindered by the formation of LiO on the electrode surface, which creates a barrier.
  • Research using electrochemical quartz crystal microbalance (EQCM) revealed that electrode orientation significantly affects LiO deposition and identified two modes of dissolution: surface dissolution and bulk fragmentation, with the latter being much faster.
  • By optimizing the dissolution process through an intermittent-desorption strategy, the discharge capacity of lithium-oxygen batteries was dramatically increased, demonstrating that overcoming LiO dissolution issues could enhance battery performance significantly.
View Article and Find Full Text PDF

Constructed the microflower-like NiFeO/CeO composites with high concentration of oxygen vacancies to accelerate the three-phase reaction in lithium-oxygen batteries.

J Colloid Interface Sci

February 2025

State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China. Electronic address:

Article Synopsis
  • - The study focuses on creating efficient catalysts, specifically NiFeO/CeO composites, to improve lithium-oxygen battery performance by enhancing the three-phase reaction at the cathode side.
  • - These composites feature a micro-flower structure that increases accessibility to active sites and combines the benefits of NiFeO's oxygen evolution and CeO's oxygen reduction activities.
  • - The developed catalyst achieves impressive results, including 343 stable cycles, a round-trip efficiency of 97.8%, and a discharge capacity of 7478 mAh/g, showcasing potential for fast charging and long-lasting performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!