Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heart failure explains a large portion of heart diseases. Molecular mechanisms determining cardiac function, by inference dysfunction in heart failure, are incompletely understood, especially in the common (or congestive) systolic (SHF) and diastolic heart failure (DHF). Limited genome-wide association studies (GWASs) in humans are reported on SHF and no GWAS has been performed on DHF. Genetic analyses in a rodent model of true DHF, Dahl salt-sensitive (DSS) rats, have begun to unravel the genetic components determining diastolic function. Diastolic dysfunction of DSS rats can be ameliorated or even normalized by distinct quantitative trait loci (QTLs), designated as diastolic function/blood pressure QTLs (DF/BP QTLs), which also affect blood pressure (BP). However, an improvement in diastolic dysfunction is merely transitory from a single DF/BP QTL, despite a permanent lowering of BP. A long-term protection against diastolic dysfunction can be realized only through combining specific DF/BP QTLs. Moreover, the worsening diastolic dysfunction with age can also be reversed in a different combination of DF/BP QTLs. Thus, distinct genes in combinations must be involved in the physiological mechanisms ameliorating or reversing diastolic dysfunction. As not all the QTLs that influence BP can affect diastolic function, it is not BP reduction itself that restores diastolic function, but rather specific genes that are uniquely integrated into the pathways of blood pressure homeostasis as well as diastolic function. Thus, the elucidation of pathophysiological mechanisms causal to hypertensive diastolic dysfunction will not only provide new diagnostic tools, but also novel therapeutic targets and strategies in reducing, curing, and even reversing DHF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HJH.0b013e328365662c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!